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A Cluster Refinement Algorithm For
Motif Discovery

Gang Li, Tak-Ming Chan, Kwong-Sak Leung and Kin-Hong Lee

Abstract—Finding Transcription Factor Binding Sites, i.e.,
motif discovery, is crucial for understanding the gene regulatory
relationship. Motifs are weakly conserved and motif discovery is
a NP-hard problem. We propose a new approach called Cluster
Refinement Algorithm for Motif Discovery (CRMD). CRMD
employs a flexible statistical motif model allowing a variable
number of motifs and motif instances. CRMD first uses a novel
entropy-based clustering to find complete and good starting
candidate motifs from the DNA sequences. CRMD then employs
an effective greedy refinement to search for optimal motifs from
the candidate motifs. The refinement is fast, and it changes the
number of motif instances based on the adaptive thresholds.
The performance of CRMD is further enhanced if the problem
has one occurrence of motif instance per sequence. Using an
appropriate similarity test of motifs, CRMD is also able to find
multiple motifs. CRMD has been tested extensively on synthetic
and real datasets. The experimental results verify that CRMD
usually outperforms four other state-of-the-art algorithms in
terms of the qualities of the solutions with competitive computing
time. It finds a good balance between finding true motif instances
and screening false motif instances, and is robust on problems
of various levels of difficulty.

Index Terms—Transcription Factor Binding Site, Motif Dis-
covery

I. INTRODUCTION

Transcription factor binding sites (TFBSs) are crucial in

gene regulation, the understanding of which is a central prob-

lem in contemporary biology. Finding the pattern of TFBSs

in DNA sequences, i.e. motif discovery, is thus important

for uncovering the underlying regulatory relationship and

understanding the evolutionary mechanism of living organ-

isms. Computational methods provide promising results for

further biological validations which alone are expensive and

laborious. However, motif discovery is a well-known chal-

lenging problem because of the low signal-to-noise ratio due

to both weak conservation and short motif widths. Although

additional evidence such as expression data and phylogenetic

information can be incorporated to help recognizing some

noisy sequences without motifs, the fundamental problem of

finding TFBSs on the sequence level is still very difficult for

computational methods. One major challenge is the difficulty

of searching for the global optimum in a high dimensional

space. Numerous algorithms, typically consensus-based search

algorithms and statistical optimization methods, have been

proposed. Consensus search algorithms suffer from the in-

sufficient descriptive power of string patterns and are limited
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by the motif width and the maximal error they can handle.

Statistical methods are significantly affected by their starting

points and often trapped in local optima or even non-optimal

solutions. Population-based evolutionary algorithms perform a

rather time consuming search and evaluate a large number of

useless candidate solutions.

In this paper, we propose a new heuristic approach called

Cluster Refinement Algorithm for Motif Discovery (CRMD),

which manages to locate the local optimal solutions efficiently

and effectively and identify the global optimum from a small

number of local optima. CRMD employs a flexible statistical

model of motif which allows a variable number of motifs

and motif instances. First CRMD uses a novel entropy-

based clustering method to find a set of complete and good

starting candidate motifs from the input sequences. Then it

employs a fast refinement method to search for optimal motifs

from the candidate motifs. The clustering chooses informative

motif candidates of various types, where the probable initial

solutions are maintained and those non-informative ones are

discarded to reduce the search space significantly. The re-

finement method incorporates a greedy sampler to obtain the

optimal motif instances from the initial candidate motifs, and

it returns a variable number of motif instances by removing

or adding motif instances adaptively according to the auto-

adjusted thresholds. CRMD can be easily extended if prior

knowledge, such as One Occurrence Per Sequence (OOPS),

is available. Endowed with an appropriate similarity test of

motifs, CRMD is also capable of discovering multiple distinct

motifs.

In the experiments, CRMD has the best results on most

of the 800 synthetic datasets of a comprehensive range of

difficulties. The results on the extensive real datasets, in-

cluding a set of eight selected real datasets, ABS database

[1], SCPD database [2], Escherichia coli datasets [3] and

Tompa’s datasets [4], also show that CRMD seldom falls

into local optima as MEME [5] and Motif Sampler [6] do,

and its performance is even better than or competitive with

those of GAME [7] and GALF-P [8]. GAME and GALF-P

are time consuming Genetic Algorithm based motif discovery

approaches and are supposed to locate the close-to-optimal

binding sites. If the OOPS assumption is assumed, the qualities

of the results of CRMD can be further improved. For a real

multiple motif problem, CRMD locates a significantly larger

number of binding sites than MEME and Motif Sampler. In

addition, CRMD has shorter running time than most of the

other algorithms tested in this paper even if it is implemented

in MATLAB and executed on Windows.

The rest of this paper is organized as follows. In Section
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II, the problem background and the related methods are

briefly introduced. In Section III, the problem is formulated

mathematically and an objective function of the problem is

derived formally. Section IV describes the algorithm of CRMD

and its sub-routines in detail. Extensive experimental results

are evaluated in Section V. The last section concludes the

paper.

II. BACKGROUND

TFBSs are small nucleotide fragments (usually≤30bp) in

the cis-regulatory regions of genes in DNA sequences. They

interact with transcription factors (TFs) and affect the tran-

scriptional activity (or gene expression). The cis-regulatory

regions are usually upstream to the transcription start sites

(TSS) of the genes. TFBSs typically have a width of 5-10

bp, but there are also real cases such as the CRP binding sites

with widths up to around 20 bp. In general, the range of widths

can be restricted to around 5 bp to 25 bp. Some well-known

characterized TFBSs such as the TATA box are proximal to

the TSS, but generally there is no prior spatial knowledge of

where the TFBSs occur in the regulatory regions.

Computational methods for identifying TFBSs, namely de
novo motif discovery, have been proposed as an attractive

pre-screening procedure and alternative to the expensive and

laborious biological experiments such as DNA footprinting

[9] and ChIP-chip [10]. The basis is that certain conserved

pattern, called the “motif”, exists among the TFBSs in the cis-

regulatory regions for a set of similarly expressed genes (co-

expressed genes), because those genes are probably regulated

by the same or similar TFs. Benefitting from the availability of

the large amount of sequencing and microarray data, now we

can identify co-expressed genes by clustering and then extract

their cis-regulatory regions. de novo motif discovery methods

try to identify the motif, or equivalently the set of TFBS

instances of co-expressed genes without prior knowledge about

their consensus appearance.

There have been a few excellent surveys of motif discovery

algorithms [4][3][11]. Current motif discovery methods can

be categorized into enumerative (consensus based) approaches

and statistical (matrix based) ones. They either discover the

string pattern (the consensus) using combinatorial approaches

or identify the profile of the TFBSs, typically the Position

Frequency Matrix (PFM), or Position Weight Matrix (PWM),

using statistical modelling.

In enumerative approaches for motif discovery, exact string

matching methods fail and exhaustive enumeration is also

infeasible due to the NP-hardness [12]. Existing consensus

based approaches [13], set the constraint that the maximal

hamming distance between the consensus and the motif in-

stances, d, is assumed to be known. They try to enumerate

all the strings satisfying the constraints in polynomial time.

Typical works include the data structure of suffix trees [14][15]

and projections [16][17]. However, such approaches cannot

meet the requirements of real world problems well because

they can only handle short motif widths (in general up to 14)

and small d within reasonable computational time. In the real

cases, however, the width can be up to 22 (in the CRP dataset

tested in this paper). d is also difficult to determine beforehand

and it varies case by case. With too small a d, most of the

true TFBSs are missed due to the stringent criteria. With too

large a d, the computation time becomes intolerable and a

large number of false positives will be output. Another major

drawback of consensus based approaches is that the discrete

consensus of the motif is not accurate enough to represent the

weak conservation between different nucleotides.

A more accurate choice is to use the PFM and PWM to

represent a motif with continuous frequency or likelihood of

each nucleotide appearing at each position within the motif.

Some statistical methods such as Expectation Maximization

[5][18] and Motif Sampler [19][20] have been proposed and

shown some success in TFBS identification. However, since

statistical methods sample TFBSs probabilistically, they may

take a long time for their solutions to converge and stabilize.

Another disadvantage is that they are sensitive to initial set-

tings, and are often trapped in local optima since many of these

methods perform local search only, and their results might

not even be local optimal if the searching is ineffective. In

TFBS identification, the local optima problems become more

critical because the weakly conserved TFBSs are typically

weak signals surrounded by a large amount of noise.

Genetic Algorithms (GAs) [7][8][21][22][23] have been

applied to TFBS identification as well. The advantage of

such GA based methods is that they are likely to locate

the global optimum in a typically difficult search space. On

the other hand, they are stochastic and so they may fail to

report consistent results in different runs. They require a large

population of solutions and the computation time is typically

long. Nevertheless, the results of the state-of-the-art GA-based

method provide a close-to-exhaustive-search-based benchmark

to evaluate the performance of our algorithm compared to

other approaches.

Recently, approaches incorporating multiple evidence be-

sides the DNA sequences have been proposed to improve

the prediction accuracy for real motif discovery problems.

Recent reviews usually include these integrated approaches

[24][25]. The evidence generally comprises of microarray data

for the input sequences, phylogenetic footprinting, ChIP-chip

and negative sequences previously known to contain no motifs,

just to name a few. Multiple evidence also means additional

data sources are needed specifically. While these methods

gain success in specific cases, the general motif discovery

problem remains challenging because it is usually difficult to

have these additional information and the search on sequences

known to have certain motifs is still difficult. In this work we

focus on the motif discovery involving only DNA sequences,

and we believe the improvement on DNA sequences alone

will certainly further enhance the methods integrated with

additional evidence.

III. OBJECTIVE

Biologically, the TFBS identification problem is to locate

the subsequences in the cis-regulatory regions which are bound

by a common protein. Up to now, the process of factor binding

is still obscure to biologists, let alone the properties of the
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binding sites. To cope with this problem with computational

methods, we define the problem as an optimization problem

of a certain mathematic objective function in the following

subsections. The algorithm to maximize the objective function

is presented in Section IV.

A. Problem Formulation
Given a set of DNA sequences, we are required to find the

binding sites corresponding to the motif instances, and we are

also interested in the common string pattern of the motif. To

be consistent with the biological observation, we assume no

maximal distance between the motif instances, and the number

of motif instances in the sequences.
Data Input. We are given a set of sequences S =

{Si|i = 1, 2, ..., D} of nucleotides defined on the alphabet

B = {A, T, G,C}. Si = (Sj
i |j = 1, 2, ..., li) is a sequence of

nucleotides, where li is the length of the sequence.
The motif width is w nucleotides long, which is assumed

known throughout the paper. The set of all the w long

subsequences contained in S is {sji

i |i = 1, 2, ..., D, ji =
1, 2, ..., li −w + 1}, where ji is the binding site of a possible

motif instance sji

i on sequence Si.
Position Output. We are required to find the Position

Indicator Matrix (PIM) A = {Ai|i = 1, 2, ..., D} of the motif,

where Ai = {Aj
i |j = 1, 2, ..., li} is the indicator row vector

with respect to (w.r.t) a sequence Si. Aj
i is 1 if position j in

Si is a binding site, and 0 otherwise. We refer to the number

of motif instances as |A| =
∑D

i=1

∑li
j=1 Aj

i .
Induced by A is a set of |A| motif instances denoted

as S(A) = {S(A)1, S(A)2, ..., S(A)|A|}, where S(A)i =
S(A)1i S(A)2i ...S(A)w

i is the ith motif instance in |A|. S(A)
can also be expanded as (S(A)1, S(A)2, ..., S(A)w), where

S(A)j = S(A)j
1S(A)j

2...S(A)j
|A| is the list of the nucleotides

on the jth position in the motif instances.
Consensus Output. We are also required to find the con-

sensus which is a string abstraction of the motif instances. In

the absence of a string consensus, we should find the Position

Count Matrix (PCM) N(A) of the numbers of different nu-

cleotide bases on the individual positions of the motif instances

of A. N(A) = (N(A)1, N(A)2, ..., N(A)w), and N(A)j =
{N(A)j

b|b ∈ B}}, where N(A)j
b = |{S(A)j

i |S(A)j
i = b}|.

N(A) can be further normalized by |A|, and thus we get the

Position Frequency Matrix (PFM) N̂(A) = N(A)
|A| , which can

be regarded as a virtual consensus, i.e., the relative frequencies

of the nucleotide types on the individual positions in the motif

instances. Given an A, it is trivial to calculate N(A). On the

contrary, it is not straightforward to find the corresponding A
from N(A).

Fig. 1 illustrates an artificial motif discovery problem. We

use M(C) = {M(C)b|b ∈ B} to denote the numbers of dif-

ferent nucleotides in the dataset C, where M(C) applies to all

the positions in C. Similarly to PFM, M(S) can be normalized

as the relative frequencies of the nucleotides in the sequences

S, which is denoted as θ0 = {θ0b = M(S)b

Σb∈BM(S)b
|b ∈ B}.

B. Maximum A Posteriori
To solve a motif discovery problem, we need to find the

optimal PIM A or PCM N(A) in terms of a certain optimiza-

tion measure. There are various methods to evaluate a set of

candidate motif instances. We adopt the Bayesian analysis to

derive the posterior probability of the motif instances, and

thus the motif discovery is to find the motif instances of

the maximal probability. To make it easy to understand our

proposed algorithm, we repeat the major steps of the derivation

in [26] herein.

For the likelihood of the motif instances, we assume that

the nucleotides in a motif instance are generated independently

across positions. Therefore, the motif instances A follow the

multinomial distribution
∏w

j=1 p(N(A)j), where p(N(A)j) is

the independent probability of generating the nucleotides on

the jth position of the motif instances. We further assume that

the probabilities of generating the nucleotides on a position

of the different motif instances are independent. The joint

probability p(N(A)j) is thus the product of the probabilities of

the nucleotides on position j in the sequences respectively, i.e.,

p(N(A)j) =
∏

b∈B θ
N(A)j

b

jb , where θjb is the latent probability

of generating base b in position j, N(A)j
b is the number

of nucleotide b on position j. In a more succinct form,
∏

b∈B θ
N(A)j

b

jb can be written as θ
N(A)j

j , where θj is the vector

of the latent probabilities {θjb|b ∈ B} on position j in the

motif instances. In summary, the motif instances A follow the

multinomial distribution
∏w

j=1 θ
N(A)j

j .

For the likelihood of the background sequences, we assume

that the nucleotides on the sequences excluding the motif

instances follow a multinomial distribution θ
M(S(AC))
0 =

∏
b∈B θ

M(S(AC))b

0b , where θ0 is the vector of the probabil-

ities generating the background nucleotides and AC is the

complement of A w.r.t S. In this paper, we assume θ0 is

fixed as the relative frequencies of the bases in S, which is

indifferent to the positions of the bases. Similarly, we also

assume an independent binomial distribution of the number

of motif instances |A|, i.e, p(A|p0) = p
|A|
0 × (1 − p0)L−|A|,

where L =
∑N

i=1 (li − w + 1) is the total number of the

subsequences and p0 is an abundance ratio to indicate the

probability of a position being a binding site.

The PIM A can be viewed as the missing label of the data

S, θ is the latent parameters of the distribution model of A,

and p0 is also unknown beforehand. The likelihood of S is

the product of the probabilities of the background sequences

and the motif instances as follows,

p(S|θ, θ0, A, p0) = p
|A|
0 (1 − p0)

L−|A|θM(S(AC))
0

wY
j=1

θ
N(A)j

j

For Bayesian analysis, we employ a multinomial Dirichlet

distribution as the conjugate prior for θ, i.e., p(θ|α) ∝∏w
j=1

∏
b∈B θαb−1

jb , where α is a small common prior for

all the θjs. We also prescribe a Dirichlet distribution as the

conjugate prior for p0, i.e. p(p0|pa, pb) ∝ ppa−1
0 (1− p0)pb−1.

Therefore, we have the posterior distribution of A, θ and p0

as follows, where we have used θ
M(AC)
0 = θ

M(S)
0

θ
M(A)
0

∝ 1

θ
M(A)
0

.
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(a) sequences S (b) PIM A (c) instances S(A) (d) PCM N(A) (e) PFM N̂(A)
acgtCGATTGCctaag 0000100000000000 CGATTGC

taTGATCGAtgacgca 0010000000000000 TGATCGA A:0261107 A: 0.0 0.2 0.6 0.1 0.1 0.0 0.7

cgaCAATTGAgcttac 0001000000000000 CAATTGA C:8023323 C: 0.8 0.0 0.2 0.3 0.3 0.2 0.3

gCGCTCGAcaagctgt 0100000000000000 CGCTCGA G:0800080 G: 0.0 0.8 0.0 0.0 0.0 0.8 0.0

cgttTGTCACAgtcta 0000100000000000 TGTCACA T:2026600 T: 0.2 0.0 0.2 0.6 0.6 0.0 0.0

tcagcCACACCCagct 0000010000000000 CACACCC

ccagagCGTCTGAttg 0000001000000000 CGTCTGA

gacttcaCGACTGAgc 0000000100000000 CGACTGA M(S)A:38 M(S)C :47 θ0A = 0.2375 θ0C = 0.2938
gctgcccatCGATTGA 0000000001000000 CGATTGA M(S)G:38 M(S)T :37 θ0G = 0.2375 θ0T = 0.2313
ccaggtacCGATTGCa 0000000010000000 CGATTGC

Fig. 1. An artificial problem of motif discovery. It shows (a) the sequences S, (b) the Position Indicator Matrix A, (c) the motif instances S(A), (d) the

Position Count Matrix N(A) and the count of the background nucleotides {M(S)b|b ∈ B}, (e) the Position Frequency Matrix N̂(A) and the background
relative frequencies {θ0b|b ∈ B}. In the sequences S, the letters in lower case are the background bases, and the letters in upper case are the motif instances

p(θ, A, p0|S, θ0, α, pa, pb)

= p(S|θ, θ0, A, p0)p(A|p0)p(θ|α)p(p0|pa, pb)

=
p
|A|+pa−1
0 (1 − p0)

L−|A|+pb−1

θ
M(S(A))
0

wY
j=1

θ
N(A)j+α−1
j

Since we are not interested in θ and p0, we can integrate

them out using the conversion between the beta function

and the gamma function1. The resulted posterior conditional

distribution of A alone is shown in Eq. 1, where we have used

|α| =
∑

b∈B αb and
∑

b∈B N(A)j
b = |A|.

p(A|S, θ0, α, pa, pb) ∝
Z

p(θ, A, p0|S, θ0, α)dθdp0

=
Γ(|A| + pa)Γ(L − |A| + pb)

θ
M(S(A))
0

wY
j=1

Q
b∈B Γ(N(A)j

b + αb)

Γ(|A| + |α|)
(1)

The objective of motif discovery can thus be formulated

as to maximize the posterior probability of A in Eq. 1. Prior

knowledge, such as the abundance of motif instances in the

dataset, the background frequencies of the nucleotide types

and the probabilities of nucleotides in the motif instances, can

be easily incorporated in the model.

IV. ALGORITHM

Given a set of sequences S and the motif width w, solving

for the optimal PIM A in terms of p(A) in Eq. 1 directly is

computationally intractable. Under the assumption of exactly

one occurrence (of motif instance) per sequence (OOPS), the

(w, d) motif discovery problem is already NP-hard [12]. If the

OOPS assumption is relinquished, the search space becomes

much bigger, and thus the problem is even more difficult.

However, as shown in Motif Sampler [6] and MEME [5], given

an initial PCM, it is possible to search for the PIM A whose

N(A) is the local optimum of the original PCM via an iterative

procedure. Therefore, it is likely to obtain the global optimal

1The beta function B(x, y) =
R 1
0 tx−1(1 − t)y−1dt, the gamma function

Γ(z) =
R ∞
0 tz−1e−tdt, and B(x, y) =

Γ(x)Γ(y)
Γ(x+y)

Algorithm 1: Main: the main program of CRMD

Input: The sequences S
Output: The best set of motif instances BA
P ← −∞;

clusters ← Cluster(sub(S));
foreach clusteri ∈ clusters do

N(Ã(i)) ← D × N̂(A(clusteri));1

[A(i), p(A(i))] ← Refine(N(Ã(i)), S);
if p(A(i)) > P then

P ← p(A(i));
BA ← A(i);

if OOPS then
[BA,P ] ← Adapt(BA);

A among the local optimal A’s from a sufficient number of

different initial PCMs.

Algorithm 1 is the main program of our algorithm, i.e., the

Cluster Refinement Algorithm for Motif Discovery (CRMD).

Firstly, all the w long subsequences are extracted from the

sequences (sub(S) in Step 1). In each sequence, the subse-

quences starting positions range from the first possible binding

site 1 until the last possible binding site |Si| − w + 1.

Secondly, the Cluster procedure partitions the set of all the

candidate subsequences sub(S) so as to group the similar

subsequences in the same clusteri, whose PIM is A(clusteri).
Each clusteri is then used to construct a set of D artificial

motif instances Ã(i) whose PFM N̂(Ã(i)) is equal to the PFM

N̂(A(clusteri)) of clusteri. Thirdly, the Refine procedure

uses the PCM N(Ã(i)) of the artificial motif instances Ã(i) to

search for the local optimal PIM A(i). The best set of motif

instances A(i) in terms of p(A(i)) is returned as the result. If

we know the motif is consistent with OOPS, a post Adapt
procedure can be applied to further enhance the best set of

motif instances.

Fig. 2 illustrates the execution path of CRMD with the

example in Fig. 1. First, the set of all the subsequences s
are extracted from the sequences S. The subsequences are

then grouped into separate clusters using Cluster. In this

example, there are altogether 17 clusters. The PFMs of the
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Fig. 2. The execution path of CRMD with the example in Fig. 1. (a) all the subsequences of seven bps are extracted from the sequences S. (b) the
subsequences are then grouped into separate clusters. (c) the initial PCMs are calculated as the PFMs of the clusters multiplied with D (10 in this example).
(d) the initial PCMs are subsequently refined to find the local optimal set of motif candidates. (e) the best set is returned as the discovered motif instances
where the correct instances are in upper cases

clusters are multiplied by D = 10 as the PCMs of the artificial

sets of motif instances. The artificial PCMs are subsequently

used as the initial PCMs to find the local optimal sets of

motif candidates in Refine. Finally, the best set of the motif

instances is returned, in which the correct motif instances are

highlighted in upper cases.

In the following subsections, we will give the details of the

procedures in the main program of CRMD in Algorithm 1.

Subsections A, B and C describe the Cluster, Refine and

Adapt procedures, respectively. Lastly, subsection D shows

how CRMD is extended to handle multiple motif discovery

problems.

A. Entropy-based Clustering

The Cluster procedure in Algorithm 1 chooses the initial

PCMs for the Refine procedure. A good initial PCM is

important for Refine as the resulted local optimum is more

likely to be the global optimum than a bad initial PCM.

A random PCM usually contains too much noise, and its

PFM bears little similarity with the existing subsequences,

and so searching from a random PCM infrequently leads

to true motif instances. Using an existing subsequence in S
as the initial PFM is better than a random one since it is

better conserved and it has at least one similar subsequence.

However, for a typical motif discovery problem, there are

thousands of subsequences, and so using all of them would

be expensive. MEME selects some subsequences randomly

and perturbs their PFMs somehow as the starting points in its

EM algorithm. Nonetheless, there is still no guarantee that the

randomly selected subsequences definitely occur in the motif

instances.

Our approach of creating and selecting the initial PCMs is

by clustering all the subsequences into modest-sized groups.

There are four advantages of our clustering. First, clustering

all the subsequences guarantees that every subsequence has

a large chance to occur in a certain cluster and thus is

likely to be considered in the subsequent process. Second,

grouping the similar subsequences together exempts us from

the costly computation of processing every subsequence later,

and in the extreme case the huge number (4w) of all the

potential consensus. Third, clustering similar subsequences

into the same group has already accomplished part of the

job of maximizing the posterior probability in Eq. 1. Forth,

our clustering has an explicit control of the number of the

subsequences in a cluster, as it discards small insignificant

clusters and partitions large clusters to remove the noise.

Compared to other clustering algorithms for motif discovery

[18][27], the third and the fourth advantages are very important

in finding the motif efficiently and effectively.

Algorithm 2 is the pseudocode of the procedure Cluster in

Algorithm 1. Provided with a set of subsequences s, Cluster
checks the size of s, i.e., |s|, at first. If |s| is smaller than D

4 ,

s is discarded. If |s| is larger than D
4 and smaller than D, it is

returned as a cluster. If |s| is larger than D, Cluster continues

to partition s. Step Pos(s) selects the optimal position pos and

the optimal nucleotide base to partition s into two sets of the

subsequences. The subsequences in the first set spos
base have the

nucleotide b = base on position pos, while the subsequences

in the other set spos
b �=base have nucleotides other than base

on position pos. Both sets are then recursively clustered in

Clustering(spos
base) and Clustering(spos

b �=base), respectively. In

this way, the set of subsequences s are separated into smaller

and smaller clusters by applying Cluster recursively.
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Algorithm 2: Cluster: partition the subsequences into

separate clusters

Input: The subsequences s
Output: the clusters

clusters ← Ø;

if |s| ≤ D then
if |s| ≥ D

4 then
clusters ← s

else
[pos, base] ← Pos(s);
clusters ← clusters ∪ Cluster(spos

base);
clusters ← clusters ∪ Cluster(spos

b �=base);

Cluster keeps a set of subsequences s intact and returns it

as a cluster if and only if its size is in the range [D
4 , D]. If the

cluster size is too large, the subsequences in the cluster may

have too much diversity which introduces unnecessary noise

into the resulted PCM. If the cluster size is too small, the

subsequences may constitute no significant motif and thus the

cluster is discarded, because we are looking for the binding

sites of a common transcription factor bound to sufficient

sequences. Even if a motif instance happens to be included in

a discarded cluster, it is still possible to recover it from another

cluster consisting of other motif instances. In the extreme

case, a set of exact D
4 subsequences is split and returned as

a cluster in each recursion of Algorithm 2. Therefore, all the

clusters consist of exact D
4 subsequences, and the maximal

number of clusters is 4L
D , where L is the total number of

all the subsequences. The actual number of clusters is much

smaller than the maximal number because the number of the

subsequences in a cluster is usually larger than D
4 . On the

other hand, if the number of the subsequences in a cluster

is smaller than D
4 , the cluster is discarded directly. It is

empirically observed that for a typical dataset of thousands

of subsequences, the number of clusters is up to only several

hundreds.

To choose the optimal position and nucleotide base in step

Pos(s) to partition the current set of subsequences s, we adopt

the clustering criterion in Eq. 2. For each potential partitioning

position pos and nucleotide type base, Pos(s) calculates the

relative entropy of the subset resulted from partitioning the

subsequences s on position pos according to nucleotide type

base, i.e., En(spos
base), and then scales the entropy with the size

of the subset, i.e., |spos
base|. The position and nucleotide type

giving the largest scaled entropy are chosen for partitioning.

|spos
base| is considered in finding Pos(s) so that a large cluster

is preferred. En(spos
base) is the sum of the relative entropies

of the subsequences spos
base on all the positions. We use the

relative information entropy because we aim to find the set of

subsequences which are similar to each other and yet different

from the background sequences.

Pos(s) = argmax
pos={1,2,...,w},base∈B

En(spos
base)|spos

base|

En(spos
base) =

wX
j=1

X
b∈B

N(spos
base)

j
b

|spos
base|

log(
N(spos

base)
j
b

|spos
base|

1

θ0b
) (2)

Our choice of the clustering criterion in Eq. 2 is deliberate,

as it enables Cluster to find the clusters of approximately

large posterior probability as defined in Eq. 1. Actually, if we

simplify Eq. 1 using the Burnside formula2 to approximate the

gamma function, we may get the log of p(A) as follows,

L̃(A) = log(p(A|S, θ0, pa, pb, α)) ≈ K + f(|A|, pa, pb, α)

+
wX

j=1

X
b∈B

(N(A)j
b + αb − 0.5)log

N(A)j
b + αb − 0.5

|A| + |α| − 0.5

1

θ0b

where K is an invariant constant w.r.t all the variables, and

f(|A|, pa, pb, α) is a function of |A| only. If we substitute A
with spos

base, the last term is approximate to En(spos
base)|spos

base| in

Eq. 2, where
N(spos

base)j
b

|spos
base| ≈ N(A)j

b+αb−0.5

|A|+|α|−0.5 and |spos
base| ≈ |A| +

|α| − 0.5. Therefore, the set of subsequences spos
base of large

En(spos
base)|spos

base| is likely to have a large p(spos
base).

B. Greedy Refinement

In Algorithm 1 and Fig. 2, the Refine procedure finds a

local optimal set of motif instances from an initial cluster.

Rather than using the actual subsequences in the cluster,

Refine uses the PCM N(Ã) = D × N̂(A(cluster)) of the

initial subsequences Ã as the seed for further refinement. Ã is

simply a symbol consisting of no actual subsequences since

only its PCM is needed in the refinement, and its PFM is equal

to N̂(A(cluster)). Greedy Refinement subsequently finds a

new set of subsequences A, whose N(A) is similar to and yet

better conserved than N(Ã).
There are two advantages of our Refine procedure. In

Section IV-B1 (Selecting Motif Instances), it uses a fast greedy

local search method to find the local optimal motif instances.

A greedy heuristic makes the search deterministic, while

the Gibbs sampling in Motif Sampler is a random process,

and thus Refine converges much faster. In Section IV-B2

(Changing Instance Number), it uses auto-adjusted thresholds

to change the number of motif instances adaptively. The search

is flexible as it allows a variable number of instances. At the

same time, the number is changed by at most one instance

each iteration, and thus Refine still converges very fast.

Algorithm 3 shows the overall pseudocode of the Refine
procedure. Iteratively, it replaces the old motif candidate

instances A(i−1), which is Ã initially, with the new candidate

motif instances A(i). The new candidate motif instances are

selected among all the subsequences to maximize the posterior

probability p(A(i)) based on the old candidate motif instances.

NUM denotes the number of motif instances. At the begin-

ning, NUM is set to the number of sequences, i.e., D. In

each iteration, after finding NUM candidate motif instances,

2Burnside formula Γ(x + 1) = x! ≈ (x + 0.5)x+0.5e−x−0.5
√

2π
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Algorithm 3: Refine: identify the motif instances based

on a cluster

Input: the initial N(Ã) and S
Output: The Local Optimal A and p(A)
NUM ← D;

A(0) ← Ø;

N(A(0)) ← N(Ã);
for i ← 1 to D do

ratios ← Ratio(N(A(i−1)), S);
A(i) ← argmaxAj

i
(ratiosj

i , NUM);1

if not OOPS then2
s1 ← argminsj∈A(i) ratios(sj);
T1 ← Expect(N(A(i) − {s1}), θ0);
if Ratio(N(A(i) − s1), s1) < T1 then

NUM ← NUM − 1;

A(i) ← A(i) − {s1}
else

s2 ← argmaxsj /∈A(i) ratios(sj);
T2 ← Expect(N(A(i)), N̂(A(i)));
if Ratio(N(A(i)), s2) > T2 then

NUM ← NUM + 1;

A(i) ← A(i) + s2

if A(i) = A(i−1) then
A ← A(i);

p(A) ← p(A|S, θ0, pa, pb, α);
return;

Refine tries to remove the least likely candidate motif in-

stance s1 to increase p(A(i)). If it is removed successfully,

NUM is decreased. Otherwise Refine tries to add the next

most likely subsequence s2 to increase p(A(i)). If it is added

successfully, NUM is increased. Refine stops iterating when

A remains the same in two consecutive iterations, and finally

it returns the last A.

The two main steps in Refine, the selection of motif

instances and the adaptive changing of the number of motif

instances are given below:

1) Selecting Motif Instances: Iteratively, Refine finds a

new set of more conserved motif instances A(i) which are

similar to the old set of candidate motif instances A(i−1). The

similarity of a subsequence Aj
i to existing motif instances A∗

is measured by how much the posterior probability p(A∗)
increases if Aj

i is added in A∗. Instead of calculating the

two probabilities with or without Aj
i and then comparing

them, we can calculate the ratio between them directly.

Ratio(N(A∗), Aj
i ) in Eq. 3 is the strength of a position

Aj
i being a binding site based on the current N(A∗). The

derivation is similar to Eq. 1, where we have used the equation

Γ(n + 1) = nΓ(n) to cancel out the Gamma functions in

both numerator and denominator. N(A∗)k
bk is the number of

nucleotide bk = Sj+k−1
i in S(A∗)k, i.e., the same nucleotide

type on position k in S(A∗) as the one bk in the subsequence

S(Aj
i ).

Ratio(N(A∗), Aj
i ) =

p(Aj
i = 1|A∗, S)

p(Aj
i = 0|A∗, S)

=

R
p(Aj

i = 1|θ, A∗, S, p0)p(θ|A∗, S)p(p0|pa, pb) dθR
p(Aj

i = 0|θ, A∗, S, p0)p(θ|A∗, S)p(p0|pa, pb) dθ

=
1

θ
M(S(A

j
i ))

0

|A∗| + pa

L − |A∗| + pb − 1

wY
k=1

N(A∗)k
bk + αbk

|A∗| + |α| (3)

After calculating the ratios of all the Aj
i based on the

old instances A(i−1), Refine selects NUM subsequences

of the maximal ratios directly and replaces A(i−1) with A(i)

in Step 1. Refine is greedy because it always select the

subsequences of the best matches, and so it may get stuck

in local optima. This is exactly why CRMD adopts a multi-

start approach with Cluster to locate the global optimum out

of many local optima. However, being greedy, Refine is fast

as A(i) usually converges in less than D
2 iterations. On the

contrary, Motif Sampler uses Gibbs sampling to iteratively

select subsequences with probabilities in proportion to their

Bayes factors. As a Markov Chain Monte Carlo method, Gibbs

sampling may take an undetermined time before generating

samples following the target distribution.

2) Changing Instance Number: An important issue in dis-

covering motif instances is choosing an appropriate number of

predicted motif instances. Predicting too many motif instances

may lead to many false instances, while predicting too few

motif instances may miss many true instances.

To address the issue of the unknown number of motif

instances, CRMD changes the number of motif instances

NUM adaptively to increase the posterior probability as

defined in Eq. 1. More specifically, Algorithm 3 adds or

removes a marginal motif instance by comparing its ratio to the

thresholds T1 and T2, which are calculated adaptively based

on the existing motif instances. The number of the predicted

motif instances is changed by at most one in an iteration, and

so it is fast and easy for the motif instances to converge in the

Greedy Refinement.

In detail, after sampling NUM candidate instances,

Refine selects the one with the smallest ratio, i.e., s1 ←
argminsj∈A(i) ratios(sj), and checks if removing it would

increase the posterior probability of the rest of the can-

didate instances A(i) − {s1}. Refine calculates the ratio

Ratio(N(A(i) − {s1}), s1). A small ratio means s1 affects

A(i)−{s1} negatively and thus should be removed. Otherwise,

Refine checks if the subsequence of the largest ratio in the

remaining subsequences, i.e., s2 ← argmaxsj /∈A(i) ratios(sj),
would benefit the probability of the current set of mo-

tif instances A(i). Similarly, Refine calculates the ratio

Ratio(N(A(i)), s2) and adds s2 if the ratio indicates that it

will increase the probability. NUM is decreased or increased

depending on whether a subsequence is removed or added. The

order of removing and adding motif instances is irreversible.

Due to the possible spurious binding sites, some noise may be

included in the current set of motif instances.. Therefore, the

noise must be removed first before searching for more motif

instances.

In Algorithm 3, Refine compares the ratios with the
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thresholds T1 and T2 in the two “if” conditions, and it removes

or adds the subsequence if the condition is satisfied. It is

important to choose appropriate values for the two thresholds

T1 and T2 since they control the value of NUM directly.

Intuitively, both thresholds should be 1 since the ratio is 1

when the posterior probabilities of a set of motif instances

with or without the subsequence are equal. However, since

the motif is usually weakly conserved, it is possible that a

true binding site is mutated somehow and looks quite different

from the others, and so removing it (or not adding it) may

actually increase the posterior probability of the set of the

motif instances. We also have to be prudent to add new motif

candidates since a false subsequence may readily increase

the posterior probability of a very weakly conserved motif.

Therefore, 1 may be inappropriate for the thresholds.

Refine adjusts T1 and T2 automatically to account for two

concerns. First, because each iteration in Algorithm 3 may

have a different set of motif instances A(i), the thresholds

are always calculated in accordance with the current A(i).

Second, since there is no prior knowledge of the subse-

quence to be included or excluded, the thresholds should

take into account all the possible subsequences of a certain

distribution. Therefore, the threshold that Refine uses is the

expected ratio of a random subsequence generated from a

certain distribution Θ w.r.t the current set of motif instances

A, i.e. E(Ratio(N(A), s)|Θ). A naive yet computationally

intensive method to calculate the expectation is to collect the

ratios of all the possible subsequences over the current motif

instances A and taking their average in proportion to their

probabilities of the specified distribution. Fortunately, Eq. 4

shows an analytical formula to calculate the expected ratio

efficiently. In Eq. 4, si is one of the 4w possible subsequences

generated from the distribution parameterized by Θ with the

probability p(si|Θ). bj
i is the nucleotide base on position j in

the subsequence si.

E(Ratio(N(A), s)|Θ) =

4wX
i=1

Ratio(N(A), si)p(si|Θ)

=
|A| + pa

L − |A| + pb − 1

4wX
i=1

wY
j=1

N(A)j

b
j
i

+ α
b
j
i

(|A| + |α|)θb
j
i

0

Θj

b
j
i

=
|A| + pa

L − |A| + pb − 1

wY
j=1

X
b∈B

N(A)j
b + αb

(|A| + |α|)θb
0

Θj
b, (4)

The computation of the part
∑4w

i=1

∏w
j=1 in Eq. 4 is

greatly simplified by using Eq. 5, which reduces 4w × w
variable references (of only 4w distinct xj

kj ) on the left to

4w variable references (without repetition) on the right. The

reason is that
∑4w

i=1

∏w
j=1 in Eq. 4 actually involves only

the complete enumeration over the cartesian product of the

sets { N(A)j
b+αb

(|A|+|α|)θb
0
Θj

b|b ∈ B}, where j = 1 · · ·w. Therefore,

we can rewrite
∑4w

i=1

∏w
j=1 as the left of Eq. 5, where

xj
kj =

N(A)j

kj +αkj

(|A|+|α|)θkj
0

Θj
kj , and simplify it as the right of Eq.

5.

wz }| {X
k1∈B

X
k2∈B

· · ·
X

kw∈B

wY
j=1

xj

kj =

wY
j=1

X
kj∈B

xj

kj (5)

Eq. 4 is consequently used to calculate T1 and T2 un-

der different distributions. For removing a motif instance,

we use the possible subsequences generated from the back-

ground distribution (Θ = θ0) to calculate the threshold

T1 = E(Ratio(N(A), s)|θ0). If the ratio of the instance in

question is smaller than T1, it is no better than a background

subsequence, and consequently it is definitely discarded. For

adding a subsequence, T2 = E(Ratio(N(A), s)|N̂(A)) is

used, which is the average ratio of the subsequences generated

from the current PFM. Derived from the Maximum Likelihood

principle, N̂(A) is actually the latent probabilities generating

the current motif instances. Therefore, a new subsequence

should be definitely added if its ratio is bigger than the average

ratio of the motif instances, namely T2.

C. Post Adaptation
Greedy Refinement allows a variable number of motif

instances, and it adjusts the number of motif instances auto-

matically in the searching. If the problem has One Occurrence

of motif instance Per Sequence (OOPS), the performance of

CRMD can be further enhanced since the search space is

greatly reduced.
To take the advantage of the OOPS assumption, we make

two modifications to Algorithm 3 of Refine. First, in Step

1, the binding sites are selected on the sequences separately.

For each sequence, Refine compares the ratios of its sub-

sequences, and then selects the one and the only one of the

maximal ratio. Second, the number of motif instances NUM
is constantly D, and so the part of changing NUM in the

if − then loop is not executed (Step 2). Since NUM is not

changed anymore, it becomes easier and faster for A(i) to

stabilize.
However, in the case that OOPS is only an approximation,

we still need to fine tune the number of motif instances.

Considering that the motif is close to OOPS, it is better

not to change the number of motif instances NUM inside

Refine since the iterative searching may amplify the noise

introduced by any additional candidate instance due to the

changing NUM .
In Algorithm 1 of the main program, the procedure Adapt

further processes the best set of motif instances BA. The

original BA is consistent with OOPS, but the true motif may

be slightly different from OOPS. Adapt first removes the

existing instances in BA whose ratios are smaller than T1 even

though it might remove all the candidate instances on a certain

sequence. Adapt then adds new instances not in BA if their

ratios are larger than T2 even though it might find more than

one candidate instance on a certain sequence. Here T1 and T2

are calculated in the same way as in the procedure Refine.

It is unnecessary to apply Adapt to every A(i) returned by

Refine in Algorithm 1, because Adapt usually does not

change the ranking of the posterior probabilities of the sets

of motif instances if the problem is inherently OOPS.
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D. Multiple Motifs Discovery

CRMD can be extended to solve the multiple motif discov-

ery problem. It is possible for a set of real DNA sequences to

contain multiple motifs. The multiple motifs may have various

kinds of consensuses, numbers of instances and degrees of

conservations. Due to the diversity of the multiple motifs,

the signal-to-noise ratios are even lower than that in the

single motif discovery problem. Therefore, it is usually more

difficult to find multiple motifs than a single motif. Some

traditional motif discovery algorithms run their single motif

searching procedures multiple times to locate different motifs.

After finding a motif, the corresponding subsequences and

their neighbors are masked off the sequences so that the

overlapping subsequences will not be identified as new motif

instances later on. The shortcoming of this masking scheme

is that the discovery of subsequent motifs are dependent on

the previously predicted motifs. If some spurious instances are

included in a motif, the neighboring subsequences which might

be true motif instances are masked off. Even if a true binding

site is predicted but included in a wrong motif, masking it

off too early may corrupt the consensus of the corresponding

motif and thus affect the discovery of the motif later.

To avoid the aforementioned drawbacks, CRMD finds mul-

tiple motifs without masking simultaneously. As Refine
samples a set of motif instances based on each cluster, a

straightforward approach for CRMD is to select a few candi-

date motifs among all the sets of motif instances returned by

Refine, i.e., {A(i)}. The selection is performed according to

two criteria, namely the posterior probabilities of the possible

motifs and the similarities between the selected motifs. Since

the motifs are weakly conserved and the clusters from Cluster
may have similar consensus, it is possible that the resulted

motifs after Refine are similar and predict many common

binding sites. Therefore, among a group of similar motifs, only

the motif of the highest posterior probability is selected.

In the current implementation of CRMD, we specify the

number of motifs M beforehand. When a new motif is

returned by Refine, it is firstly checked if it is similar to any

of the motifs already selected. If so, the new motif replaces

the similar motif if the former has a higher probability. If there

is no similar motifs already selected, the new motif replaces

the selected motif of the lowest probability if the former has

a higher probability. The approach ensures that the M output

motifs are different from each other, and at the same time they

are of as high probability as possible.

To measure the similarity between the PCMs of two

motifs, we adopt the homogeneity test using the χ2 distance

in [28]. Basically, it shifts and aligns the two motifs. If

their PCMs on all the overlapping positions are statistically

generated from the same distribution, the two motifs are

deemed similar.

V. EXPERIMENTS

We have tested CRMD on both synthetic and real DNA

datasets. A testing dataset consists of sequences with motif

instances already tagged, and hence it can be used for the

algorithm performance evaluation. For some datasets, the

widths of the motifs were assumed known beforehand and

were be used directly in CRMD. For the other datasets with

unknown widths, we either used a common fixed width or

tried a range of different widths and selected the width giving

the best result.

Some researchers use two levels of performance indices

to evalute the algorithm [4][3]. On the nucleotide level, it

is calculated that how many nucleotides that the predicted

instances and the true instances overlap for. On the site level, a

predicted instance is correct if it overlaps with the true instance

for at least one nucleotide. To combine the performance

indices on both levels, we propose that a motif instance Aj
i

is correctly recovered if either of its ends is within three bp

away from the corresponding end of the true motif instance

[7][8]. More formally, we have,

Aj
i = 1 is

j
correct if |j − js| < 3 or |j + w − je| < 3
incorrect otherwise

(6)

where js and je are the indices of the starting and ending

positions of the closest true motif instance. The three bp

tolerance is reasonable since the widths of the tagged motif

instances vary around the known width in a real dataset. It is

conjectured that the true motif instance should lie somewhere

between the two ends of the tagged instances [4]. This criterion

of successful prediction is strict and practical since it does tell

a biologist where to look for the true binding sites. In contrast

to comparing binding sites, comparing the PFM or PWM of

the discovered motif and the true motif may be insufficient,

because a small difference in PFM or PWM may lead to very

different binding sites.

To measure the performance of CRMD and other algo-

rithms, we adopt the metrics of Precision, Recall and

F − score [7][8] defined as below, where the operator | · |
is the cardinality of the set.

Precision = |correct motif|
|motif found|

Recall = |correct motif|
|true motif|

F − score = 2 × Precision∗Recall
Precision+Recall

,

After we find the candidate instances computationally, the

results need to be verified in biological experiments. We hope

for a high Precision to avoid wasting too much effort on the

false motif instances. In the meanwhile, we should miss as few

true motif instances as possible, so a high Recall is preferred.

However, there is often a tradeoff between Precision and

Recall in real problems. Sometimes a high Recall means

a large number of candidate instances, which may consist

of many false positives. On the contrary, a high Precision
can be achieved by retaining only the highly conserved motif

instances at the risk of deleting some true weakly conserved

motif instances by mistake. Therefore, F−score is introduced

to mix Precision and Recall.

We have compared CRMD to Motif Sampler [6], MEME

[5], GAME [7] and GALF-P [8]. Since Motif Sampler and

MEME are sensitive to the initial settings, they were executed

in the manner of multi-start with different starting points.
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GAME and GALF-P are GA-based, and their results may

be inconsistent and affected by the random seeds, so only

the average results of GAME and GALF-P in 20 runs are

reported. In each run, the total numbers of the sets of motif

instances searched by GALF-P and GAME are 3,000,000

and 30,000,000, respectively. With such a large number of

sampling, the searching of GALF-P and GAME are relatively

exhaustive, and their results are expected to be close-to-

optimal.

The following subsections A, B and C give the details of the

results for the synthetic single motif, real single motif and real

multiple motif discovery problems tested in our experimental

evaluations. In the real single motif discovery experiment,

we have tested the eight selected datasets in GAME [7] and

GALF-P [8], the ABS database [1], the SCPD database [2],

the Escherichia coli dataset [3] and the Tompa dataset [4].

A. Synthetic Datasets

A total of 800 synthetic datasets with length 300 bp for each

sequence were generated with the following eight combina-

tions of scenarios: (1) motif width: short (8 bp) or long (16 bp);

(2) number of sequences: small (20) or large (60); (3) motif

conservation: high or low. For each combination, 100 datasets

are generated randomly and embedded with the instances of

a random motif. In the high conservation scenario, on every

position of the motif instances, the dominant nucleotide is gen-

erated with 0.91 probability (while all other three nucleotides

with 0.03 each). In the low conservation scenario, only 60%
of the positions in the motif instances are as highly conserved

as in the previous high conservation scenario, while the rest

40% of the positions are lowly conserved, where the dominant

nucleotide is generated only with probability 0.55 (while all

other three nucleotides with 0.15 each) in every instance. To

simulate the noisy situation in real data, in each synthetic

dataset, the probability of containing no motif instances is 0.1

for each sequence. In the rest of the sequences which contain

motif instances, the probability for a sequence to have more

than one instance is 0.1. The number of additional instance(s)

in such a sequence follows the geometric distribution with

p = 0.5, i.e., p(k) = (1− p)k−1p, and so there are expectedly
1
p = 2 additional motif instances embedded in the sequence.

Table I shows the results of the five algorithms. For each

scenario, the results are averaged over the 100 datasets. CRMD

has the highest average F − scores on six out of eight

scenarios. In the remaining two scenarios CRMD has the

second highest average F−scores. CRMD also has the highest

average F −score over all the 800 problems of eight different

scenarios, which proves that CRMD is relatively robust in

a variety of problems. For the easy datasets in the last two

scenarios (with long motif width and high conservation), all

the algorithms have very good results (F − scores around

0.98), and so there is no big room for the improvement for

CRMD. For the other more difficult problems, the results

of the algorithms vary in a wider range and the advantage

of CRMD is more apparent. It is also interesting to notice

that MEME has the highest average Precision in most of

the scenarios, while GALF-P has the highest average Recall

TABLE II
THE REAL DATASETS: THE NUMBERS AND THE LENGTHS OF SEQUENCES,

THE WIDTH AND THE NUMBERS OF MOTIF INSTANCES

dataset #sequence length width #instance

CREB 17 350 8 19

CRP 18 105 22 23

ERE 25 200 13 25

E2F 25 200 11 27

MEF2 17 199 7 17

MYOD 17 200 6 21

SRF 20 345 10 36

TBP 95 200 6 95

in most of the scenarios. However, CRMD has both good

Precisions and Recalls on most of the datasets, and thus it

yields the highest average F −scores due to the good balance

between Precision and Recall.

B. Real Datasets

To investigate the performance of CRMD on real datasets,

and how it is compared to other algorithms, we have also tested

the algorithms on a wide range of real datasets. Section V-B1

(Eight Selected Datasets) describes a detailed analysis of the

results on the eight datasets tested by GAME [7] and GALF-

P [8]. Section V-B2 (ABS and SCPD databases) reports the

results on the ABS database [1] and the SCPD database [2].

Section V-B3 (E. coli and Tompa datasets) reports the results

on the Escherichia coli dataset [3] and the Tompa dataset [4].
1) Eight Selected Datasets: Following GAME [7] and

GALF-P [8], we have tested eight real datasets, i.e., CREB,

CRP, ERE, E2F, MEF2, MYOD, SRF and TBP, and compared

the performance with the other four algorithms. These eight

datasets consist of the sequences from many different species.

The CRP dataset contains TFBSs bound by the cyclic amp

receptor protein in Escherichia Coli [29][30][31]. The ERE

dataset contains the estrogen receptor elements that ER binds,

from the sequences of various species [32]. The E2F dataset

contains TFBSs of the E2F family from different mammalian

species [33][34][35]. The datasets of CREB, MEF2, MYOD,

SRF and TBP were chosen by GAME from the ABS database

of annotated regulatory binding sites [1]. As shown in Table II,

the real datasets have a variety of the numbers of sequences,

the lengths of sequences, the widths of motifs and the numbers

of motif instances. We adopt the same motif widths as used

in [7] and [8]. For a fair comparison, all the algorithms were

run with as few prior knowledge as possible, and most of their

running options were set to their default values.

Table III compares the results of the four algorithms

(GAME, MEME, Motif Sampler and CRMD) on the eight

real datasets. Due to the adaptive thresholds adopted in the

Greedy Refinement, CRMD is able to choose an appropriate

number of motif instances, and thus finds a good balance

between Precision and Recall, which consequently leads to

the highest F − scores on six problems. Compared to Motif

Sampler, CRMD is better on seven out of eight datasets in

terms of the F − scores. Compared to MEME, CRMD loses

on two datasets while it wins on all the other datasets. For

the MYOD problem in particular, because its motif width is

short and the number of the sequences is small, the signal-to-

noise ratio is low. Other algorithms were unable to identify
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TABLE I
AVERAGE RESULTS FOR THE SYNTHETIC DATASETS EXPERIMENT: WIDTH IS FOR THE MOTIF WIDTH, NUM IS FOR THE NUMBER OF SEQUENCES, CON IS

FOR CONSERVATION DEGREE, P IS FOR Precision, R IS FOR Recall AND F IS FOR F-SCORE. SAMPLER REFERS TO MOTIF SAMPLER

Scenario GALF-P GAME MEME Sampler CRMD
Width Num Con P R F P R F P R F P R F P R F

Short Small Low 0.38 0.56 0.44 0.29 0.32 0.30 0.49 0.34 0.39 0.44 0.37 0.40 0.46 0.45 0.46
Short Large Low 0.52 0.59 0.55 0.42 0.32 0.36 0.63 0.33 0.42 0.55 0.41 0.46 0.53 0.53 0.53
Long Small Low 0.87 0.91 0.89 0.78 0.87 0.82 0.91 0.86 0.88 0.87 0.89 0.88 0.91 0.88 0.91
Long Large Low 0.91 0.90 0.91 0.92 0.90 0.90 0.96 0.85 0.90 0.89 0.92 0.91 0.92 0.92 0.92
Short Small High 0.73 0.90 0.80 0.71 0.80 0.75 0.87 0.84 0.85 0.85 0.85 0.85 0.86 0.83 0.86
Short Large High 0.81 0.86 0.83 0.83 0.83 0.83 0.91 0.76 0.83 0.87 0.83 0.85 0.84 0.83 0.84
Long Small High 0.97 0.99 0.98 0.94 0.99 0.97 0.98 0.99 0.98 0.96 1.00 0.98 0.99 0.99 0.99
Long Large High 0.97 0.97 0.97 0.98 0.99 0.98 0.99 0.98 0.98 0.96 1.00 0.98 0.99 0.99 0.99

Average 0.77 0.84 0.80 0.73 0.75 0.74 0.84 0.74 0.78 0.80 0.78 0.79 0.81 0.80 0.81

TABLE III
THE RESULTS FOR THE REAL DATASETS ASSUMING NO OOPS: P IS FOR

Precision, R IS FOR Recall AND F IS FOR F-SCORE. SAMPLER REFERS

TO MOTIF SAMPLER

Problem
GAME MEME Sampler CRMD

P R F P R F P R F P R F

CREB 0.43 0.42 0.42 0.71 0.63 0.67 0.71 0.63 0.67 0.67 0.63 0.65
CRP 0.79 0.78 0.78 0.89 0.67 0.76 0.94 0.70 0.80 1.00 0.74 0.85
ERE 0.52 0.78 0.62 1.00 0.68 0.81 0.75 0.72 0.73 0.71 0.80 0.75
E2F 0.79 0.87 0.83 0.82 0.85 0.84 0.88 0.85 0.87 0.83 0.93 0.88

MEF2 0.52 0.55 0.53 0.93 0.82 0.88 0.72 0.76 0.74 0.85 1.00 0.92
MYOD 0.14 0.14 0.14 0.29 0.19 0.23 0.46 0.29 0.35 0.86 0.90 0.88

SRF 0.71 0.86 0.78 0.74 0.89 0.81 0.76 0.86 0.81 0.79 0.86 0.83
TBP 0.81 0.74 0.77 0.83 0.69 0.76 0.74 0.67 0.70 0.83 0.89 0.86

Average 0.59 0.64 0.61 0.78 0.68 0.72 0.74 0.69 0.71 0.82 0.84 0.83

the true motif in MYOD probably because of the marginal

win of the fitness of the true motif. On average, CRMD has

the highest Precision, Recall and F − score, which proves

that the performance of CRMD is quite stable on the eight

problems.

We have also tested the algorithms with the prior knowl-

edge of OOPS. A close investigation of the eight problems

reveals that they are more or less consistent with the OOPS

assumption. As shown in Table II, except for the problem

SRF, the numbers of motif instances are close to the num-

bers of sequences. We activated the Adapt procedure in

CRMD and searched only for OOPS solution in the Refine
procedure. We have also run GALF-P and MEME on the

eight problems, which are capable of searching for OOPS

consistent motifs. GALF-P searches for OOPS solutions only

in its GA procedure, and then it shrinks or expands the

solutions with a heuristic post processing procedure. MEME

has an OOPS running option which enables MEME to search

for exactly one instance in each sequence. Table IV shows

the results of CRMD, GALF-P and MEME. Mostly, CRMD

obtains better results than those obtained without OOPS in

Table III. Compared to GALF-P and MEME, CRMD has the

highest F − scores on four problems, and the second highest

F − scores on the other four problems. CRMD also has the

highest average F − score. In particular, on the problem of

MYOD, CRMD has a remarkable advantage over the other

two algorithms. Even though GALF-P is the best on three

problems, its results have some variance since it is GA-based

and sensitive to the initial population.

Table V compares the running time of the five algorithms

(without OOPS) on the eight real datasets. CRMD was imple-

mented in MATLAB, GAME was implemented in Java, and

TABLE IV
THE RESULTS FOR THE REAL DATASETS ASSUMING OOPS: P IS FOR

Precision, R IS FOR Recall AND F IS FOR F-SCORE

Problem
GALF-P MEME CRMD

P R F P R F P R F

CREB 0.70 0.84 0.76 0.71 0.63 0.67 0.73 0.84 0.78
CRP 0.99 0.73 0.84 0.67 0.52 0.59 0.94 0.74 0.83
ERE 0.82 0.76 0.79 0.76 0.76 0.76 0.67 0.80 0.73
E2F 0.77 0.85 0.81 0.76 0.70 0.73 0.68 0.85 0.75

MEF2 0.91 0.98 0.95 0.94 0.94 0.94 1.00 1.00 1.00
MYOD 0.57 1.00 0.72 0.06 0.05 0.05 0.86 0.90 0.88

SRF 0.75 0.89 0.82 0.95 0.53 0.68 0.77 0.92 0.84
TBP 0.87 0.87 0.87 0.94 0.94 0.94 0.85 0.94 0.89

Average 0.80 0.87 0.82 0.72 0.63 0.67 0.81 0.87 0.84

TABLE V
THE RUNNING TIME (SECOND) COMPARISON. CRMD WAS IMPLEMENTED

IN MATLAB, GAME WAS IMPLEMENTED IN JAVA, AND THE OTHER

ALGORITHMS WERE IMPLEMENTED IN C. CRMD, GAME AND GALF-P
WERE EXECUTED IN WINDOWS, WHILE THE OTHER ALGORITHMS WERE

EXECUTED IN LINUX

Problem GALF-P GAME MEME Sampler CRMD

CREB 42.75 133.00 1.41 16.69 24.77

CRP 98.20 390.05 0.50 13.87 22.55

ERE 83.20 334.20 2.06 34.83 47.48

E2F 86.95 286.65 2.15 33.54 58.67

MEF2 34.40 112.05 1.29 14.83 23.14

MYOD 26.25 91.05 1.45 13.60 24.00

SRF 49.10 224.05 1.69 22.76 82.84

TBP 74.40 768.80 39.05 87.00 599.13

the other algorithms were implemented in C. CRMD, GAME

and GALF-P were executed in Windows, while the other

algorithms were executed in Linux. This is not a completely

fair comparison, but it conveys a rough idea that how the

running time of the algorithms are compared with each other.

Even though CRMD was implemented in MATLAB and

executed in Windows, its running time is still acceptable. The

quality of the solutions of GALF-P is comparable to CRMD,

but the running time of GALF-P is longer than CRMD in most

problems. Compared to the two non-GA-based algorithms

Motif Sampler and MEME, CRMD is comparable to Motif

Sampler, and MEME is the fastest, whose solution qualities

are worse than those of CRMD though. We believe if we had

implemented CRMD in C instead and executed it on Linux, its

running speed would be significantly faster. This verifies that

CRMD is capable of predicting motif binding sites in real life

problems accurately and consistently with a reasonable amount

of computation power.

To further evaluate the effectiveness of Cluster in CRMD,

Table VI compares the total numbers of all the subsequences,

the theoretical maximal numbers of the clusters and the actual
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TABLE VI
THE NUMBERS OF THE SUBSEQUENCES, THE THEORETICAL MAXIMAL

NUMBERS OF THE CLUSTERS
2L
D

, THE NUMBERS OF THE CLUSTERS AND

THE REDUCTIONS OF THE SEEDS FOR Refine

Problem #subsequence max( 4L
D ) #cluster reduction

CREB 3544 834 292 92%

CRP 1512 336 118 92%

ERE 4700 752 276 94%

E2F 4750 760 268 94%

MEF2 3293 775 267 92%

MYOD 3315 780 280 92%

SRF 4127 825 292 93%

TBP 18525 780 296 98%

numbers of the clusters. The theoretical maximal number of

clusters is 4L
D which is already significantly smaller than the

total number of all the subsequences L. In the eight testing

real datasets, the actual numbers of clusters are even much

smaller than the theoretical maximal numbers of the clusters.

The reductions over the total numbers of the subsequences are

over 90%. This shows that Cluster not only provides good

initial PCMs for Refine, but also saves a lot of computation

time.

It is also interesting to inspect the performance of CRMD

without either of Cluster and Refine. As regard to Cluster,

it is empirically observed that with the same number of initial

candidates, the performance of using random initialization

instead for Refine is worse than that of using Cluster. The

results of random initialization also vary with the different

pseudo-random number seeds. Especially for the problem

MYOD, which has short width and small number of se-

quences, the precision and the recall of the random initial-

ization are zero in the worst case. As regard to Refine
(with Cluster still in CRMD), if the thresholds T1 and T2

in Algorithm 3 are fixed at 1, the performance of CRMD

deteriorates a lot. On the problems MEF2 and MYOD in

particular, CRMD cannot find any correct motif instance at

all.

2) ABS and SCPD databases: Besides the eight selected

datasets, we have tested CRMD, MEME and Motif Sampler

on the ABS [1] and the SCPD [2] databases as well. The

ABS database has 650 experimental binding sites from 69

transcription factors in human, mouse, rat and chicken genome

sequences. We downloaded the sequences and the binding

sites from the website of ABS database, and re-grouped the

sequences of the same transcription factors together, and thus

we got a total of 69 datasets, each of which consists of the

sequences bound by a common transcription factor. SCPD is

a promoter database of the yeast Saccharomyces cerevisiae.

It contains 580 experimentally mapped transcription factor

binding sites. Because the website provides no FASTA files,

we had to collect and organize the sequences and the binding

sites manually, and kept only the transcription factors of more

than four binding sites, and thus we got a total of 28 datasets.

We assume no prior knowledge of the exact widths for the

motifs in the ABS and the SCPD datasets. CRMD and Motif

Sampler used the commonly adopted fixed widths of 10 bps

and 13 bps in ABS and SCPD, respectively, which are the

medians of the widths of the true motif instances in ABS and

SCPD, respectively. For MEME, the widths varied between

TABLE VII
THE AVERAGE RESULTS OF MEME, MOTIF SAMPLER AND CRMD ON

THE ABS AND THE SCPD DATABASES. P IS FOR Precision, R IS FOR

Recall, F IS FOR F − score

database
MEME Sampler CRMD

P R F P R F P R F

ABS 0.10 0.21 0.13 0.15 0.10 0.11 0.18 0.15 0.16
SCPD 0.10 0.05 0.05 0.29 0.19 0.23 0.31 0.26 0.28

[6, 26] and [7, 26] in ABS and SCPD, respectively, which are

actually the ranges of the widths of the true motif instances

in ABS and SCPD, respectively. Because we did not use the

actual motif width, the tolerance in Eq. 6 was relaxed to six

bps. Table VII shows the average results of CRMD, MEME

and Motif Sampler on the ABS and the SCPD database. For

the ABS dataset, CRMD has higher Precision while lower

Recall rate than MEME, and still it has the highest F −score.

For the SCPD dataset, CRMD has the highest Precision,

Recall and F − score.

3) E. coli and Tompa datasets: We have also tested CRMD

on the Escherichia coli (E. coli) [3] and the Tompa [4] datasets,

which were collected and setup as the benchmark problems

for testing motif discovery algorithms. The E. coli dataset

is of prokaryotic data. It consists of 62 motifs of a variety

characteristics, such as the motif width, the number of sites

per sequence and the sequence length, etc. The Tompa dataset

consists of 56 eukaryotic datasets, covering fly, human, mouse

and yeast. The motifs are very weakly conserved in the Tompa

dataset, which is by far the most difficult dataset tested in this

paper.

The E. coli and the Tompa datasets were already tested

with other algorithms, including MEME and Motif Sampler,

in [3] and [4], respectively. They used different performance

evaluation indices other than the Precision, Recall and

F − score. Their performance indices can be categorized on

two levels. On the nucleotide level, the performance indices

(with the prefix n) are calculated w.r.t. to the number of the

nucleotides that the true and the predicted instances overlap.

On the site level, the performance indices (with the prefix

s) are calculated w.r.t the number of the motif instances that

the predicted instances overlaps with the true instances for at

least one nucleotide. Suppose on the nucleotide level, we have

nTP (true positive) as the number of true motif nucleotides

correctly predicted, nTN (true negative) as the number of true

background nucleotides not predicted, nFP (false positive)

as the number of falsely predicted motif nucleotides and

nFN (false negative) as the number of true motif nucleotides

not predicted. Eq 7 defines the nucleotide level performance

indices. The site level ones are similarly defined by replacing

all the “n” with “s” in Eq. 7. The original papers [3][4] have

more details on the definitions of their performance indices.

nSn = nTP/(nTP + nFN)

nSp = nTP/(nTP + nFP )

nPC = nTP/(nTP + nFP + nFN)

nF = (2 × nSn × nSp)/(nSn + nSp) (7)
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TABLE VIII
THE AVERAGE PERFORMANCE OF MEME, MOTIF SAMPLER AND CRMD

ON THE E. COLI DATASETS. EACH ALGORITHM OUTPUTS FIVE MOTIFS,
AND THE ONE OF THE BEST nPC AMONG THE FIVE OUTPUTS IS

RECORDED AS THE RESULT. THE LAST COLUMN REPORTS THE nPC OF

THE TOP-SCORED MOTIF IN TERMS OF THE SCORE FUNCTION USED IN THE

INDIVIDUAL ALGORITHM

algorithm
nucleotide level site level best

nPC nSn nSP nF sPC sSn sSp sF nPC

MEME 0.158 0.259 0.199 0.225 0.295 0.461 0.436 0.448 0.116

Sampler 0.153 0.179 0.237 0.204 0.302 0.331 0.476 0.390 0.069

CRMD 0.286 0.321 0.412 0.346 0.459 0.531 0.625 0.558 0.221

TABLE IX
THE AVERAGE RESULTS OF MEME, MOTIF SAMPLER AND CRMD ON

THE TOMPA DATASET. xPPV IS xTP/(xTP + xFP ) FOR BOTH

NUCLEOTIDE AND THE SITE LEVELS, AND sASP IS (sSn + sPPV )/2

algorithm nSn nPPV nPC sSn sPPV sASP

MEME 0.067 0.107 0.043 0.111 0.139 0.125
Sampler 0.060 0.107 0.040 0.098 0.101 0.100

CRMD 0.091 0.088 0.047 0.141 0.108 0.125

For the E.coli dataset, each algorithm is required to output

five motifs, and the one with the best nPC, is recorded as the

result. The widths of the motifs vary from problem to problem,

and thus CRMD used 15 as the fixed common width for all the

problems, as used by other algorithms in the original paper [3].

Table VIII shows the average results of CRMD, MEME and

Motif Sampler on all the datasets, where the results of MEME

and Motif Sampler are quoted from the paper [3]. On all the

nucleotide level and site level performance indices, CRMD

has around 10 percentage better results. More surprisingly as

indicated in the last column (best nPC), if CRMD outputs a

single motif, its performance is already better than the best of

the five outputs of MEME and Motif Sampler.

For the Tompa dataset, the algorithms are permitted to fine

tune the parameters and report the best result. Since we did

not know the exact widths of the motifs in the datasets, we

ran CRMD with a series of widths from 10 to 15. For each

width, we output 10 motifs (without the similarity test), and

so we had a total of 60 motifs. Among the 60 motifs, we

calculated the similarity between each pair of motifs in terms

of the χ2 distance [28], and we selected the motif which

has the largest number of similar motifs as the result. Table

IX shows the average results of MEME, Motif Sampler and

CRMD on the 56 Tompa datasets, where the results of MEME

and Motif Sampler are quoted from the paper [4]. Generally,

the sensitivity of CRMD is slightly better, and the specificity

of CRMD is slightly worse, which result in marginally better

performance coefficient. As the motifs in most of the Tompa

datasets are very weakly conserved, the algorithms usually

predict no correct results on both nucleotide and site levels on

those datasets. Therefore, the average performance indices of

the three algorithms are pretty low, which shows that the de
novo motif discovery on real datasets of complex organisms is

still difficult for the current algorithms with often more than

questionable results.

C. Multiple Motif Dataset

To test the capability of CRMD for multiple motif discovery,

we have also tested it on the liver-specific dataset [36], which

TABLE X
THE RESULTS OF MEME, MOTIF SAMPLER AND CRMD ON THE

LIVER-SPECIFIC DATASET OF MULTIPLE MOTIFS. EACH PROGRAM IS

EXECUTED TWICE WITH FIVE AND TEN OUTPUTS, RESPECTIVELY. P IS FOR

Precision, R IS FOR Recall, F IS FOR F − score

#output
GAME MEME Sampler CRMD

P R F P R F P R F P R F

5 0.27 0.33 0.3 0.31 0.18 0.23 0.34 0.17 0.23 0.46 0.5 0.48

10 0.32 0.6 0.42 0.30 0.23 0.36 0.40 0.18 0.25 0.44 0.78 0.56

contains multiple motifs. Biological experiments verified that

the liver-specific gene expression is controlled by the com-

bined action of a small set of TFs, primarily HNF-1, HNF-3,

HNF-4 and C/EBP. The dataset contains 19 sequences and

annotates 60 binding sites belonging to ten motifs. However,

three motifs have only one instance each, and three other

motifs have only two instances each. These six motifs are

supposed to be very difficult to find due to the extreme low

signal-to-noise ratio. The rest four motifs have 19, 13, 13 and

11 instances, respectively, among which three motifs have less

instances than the sequences. The widths of the motifs vary

from 6 to 31, and even the motif instances of the same motif

may have different lengths.

We have run GAME, MEME, Motif Sampler and CRMD

on the liver-specific dataset, while GALF-P is incapable of

handling multiple motif discovery problem. We used the

average width 15 in all the experiments. We carried out two

sets of experiments. One was with five outputs to account

for the four motifs with most TFBSs, and the other was with

ten outputs to account for the motifs with fewer TFBSs as

well. The prediction tolerance is relaxed to six bps because

the motifs are very weakly conserved.

Table X shows the results of the four programs in the

two sets of experiments of five outputs and ten outputs,

respectively. The Precisions in all the experiments are lower

than 0.50, and CRMD is the only one whose Precisions are

higher than or equal to 0.44. The low Precisions indicate

that there are many false positives in the results. This is

expected since we had to output more predicted motifs than

the true ones due to the low signal-to-noise ratio. MEME and

Motif Sampler have very low Recalls in both 5-output and

10-output experiments. When the number of the outputs is

increased from 5 to 10, the Recalls of GAME and CRMD

are increased significantly as more binding sites are correctly

predicted. CRMD has the highest Precisions and Recalls in

both experiments, and so its F − scores are also the highest.

The advantage of the F−scores of CRMD over the F−scores

of GAME, which are the second highest, is more than 10

percentages.

VI. CONCLUSION

In this paper, we have proposed a novel approach for

motif discovery, i.e., Cluster Refinement Algorithm for Motif

Discovery (CRMD). CRMD uses the Entropy-based Clustering

to find good initial motif candidates first, and then it uses

the Greedy Refinement to find the local optima of the initial

candidates. CRMD searches for motifs by maximizing the

posterior probabilities of the motif instances. The posterior
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probability allows a variable number of motif instances and

it requires little prior knowledge of motifs. The Entropy-

based Clustering partitions all the subsequences of DNA

sequences into clusters of maximal relatively information

entropies, and thus clustering alone has already maximized

part of the posterior probability. The number of the clusters

is much smaller than the number of all the subsequences,

and so the computation cost is significantly reduced. The

Greedy Refinement finds the local optimal binding sites given

the initial clusters. It selects the motif instances of maximal

probabilities deterministically without taking extra time in

sampling subsequences probabilistically. It also automatically

removes or adds motif instances according to the thresholds

which change adaptively following the distribution of the

current motif instances. If the prior knowledge of OOPS

is available, CRMD can enhance its prediction performance

further by searching for OOPS consistent solutions only and

adjusting the number of motif instances later on. For multiple

motif problem, CRMD measures the similarities among the

candidate motifs using the χ2 homogeneity test, and thus it is

able to keep only distinct motifs of high probabilities.

To compare it to other state-of-the-art algorithms, CRMD

has been tested extensively on both synthetic and comprehen-

sive real datasets of single and multiple motifs. As observed

from the empirical results, CRMD is very competitive, and

often the best among the testing algorithms. The synthetic

data are generated with a variety of properties and difficulties.

CRMD has achieved a good balance between Precision
and Recall, and thus obtained the highest F − scores on

most of the synthetic problems. The real datasets tested are

comprehensive. On the eight real datasets selected by GAME

[7] and GALF-P [8], CRMD still has the highest F−scores on

most of the problems, and its average Precision, Recall and

F −score are the highest as well. With the OOPS assumption,

the performance of CRMD is further enhanced, and its results

are better than or comparable to those of the other two

algorithms. On other four databases, i.e., the ABS database

[1], the SCPD database [2], the Escherichia coli dataset [3]

and the Tompa dataset [4], CRMD has also achieved the best

performance in terms of either of our default metrics or of

the nucleotide and site level metrics used in [4] and [3]. For

the liver-specific dataset of multiple motifs, CRMD identifies

significantly more binding sites than the other multiple motif

discovery approaches.
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