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Abstract. This paper gives a brief overview of several applications from the emerging interdisciplinary field of
genomic coding theory that aims at applying concepts and techniques from the field of coding theory to problems from
the field of molecular biology. This is motivated by the high precision and robustness found in genomic processes
in addition to the increase in the availability of genomic data for a wide range of species. The considered applications
include source coding for DNA classification, channel coding for modeling gene expression with emphasis on the process
of translation, existence of error correcting codes in the DNA, and channel coding structure in the genetic code. Example
results are presented that demonstrate the relevance of the proposed approaches and open questions are formulated to
suggest future research work.

1 INTRODUCTION

Motivated by the redundant structure of the genetic
code, the existence of large evolutionary conserved non-
coding regions among species, and the existence of special
sequences in coding regions, several researchers are trying
to apply coding theory models to understand the structure
of the DNA and the operation of various genetic processes.

Yockey proposed one of the first models for gene
expression using encoding/decoding concepts from com-
munication theory [1]. Liebovitch et al. developed the
first efficient method to scan through DNA sequences to
determine whether some linear block code structure is
present [2]. Years later, Rosen developed a method for
the detection of linear block codes that accounts for pos-
sible insertions and deletions in the DNA sequences [3].
However, neither work was able to support the existence
of such simple error correcting codes in the DNA. Bat-
tail argued about the existence of nested error correcting
codes in the DNA supported by several biological obser-
vations such as the size of the human genome being far
larger than the size needed to specify every characteristic
of any given individual [4]. On other fronts, Mac Donaill
proposed a parity check code interpretation of nucleotide
composition [5], and May et al. proposed the use of block

and convolutional codes to model the process of translation
initiation in prokaryotic organisms [6].

This paper is organized as follows. Section 2 presents
some biological background on gene expression in addi-
tion to some analogies that motivate this work. Section 3
presents recent research contributions and open problems
in the field of genomic coding theory. Finally, conclusions
are drawn in Section 4.

2 WHY CODING THEORY?

2.1 FROM DNA TO PROTEINS

Gene expression is the process through which infor-
mation contained in the DNA is transformed into proteins.
Gene expression is composed of two main steps: transcrip-
tion and translation. In transcription, the double stranded
DNA molecule is used to synthesize a new single stranded
molecule called messenger RNA (mRNA). The RNA poly-
merase binds to a specific region in the DNA in order to
separate the two strands. Once they are separated, one
of the strands serves as a template for the creation of the
mRNA. The resulting mRNA is consequently spliced to re-
move the introns (non-coding regions) which results in a
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sequence of pure exons called mature mRNA. The mature
mRNA travels in the cell until the ribosome binds to it at
a specific region in order to start the process of translation.
Once the ribosome binds properly (translation initiation),
it starts processing triplets of bases (also called codons) of
the mature mRNA to produce amino acids. The ribosome
serves as a platform for the transfer RNA (tRNA) molecule
which holds the amino acids. A tRNA molecule connects
using its anti-codon end with codons found in the mature
mRNA until a sequence of amino acids is chained. The
formed chain then folds to finally produce a protein. Note
that the gene expression processes differ between eukary-
otes and prokaryotes. Prokaryotes are simple organisms
that do not have a nucleus such as bacteria (e.g. E. Coli)
whereas eukaryotes are organisms that have their DNA in
the nucleus (e.g. humans).

2.2 ANALOGIES AND MODELING

There are several analogies between data transmission
in communication systems and DNA processing in gene
expression. The DNA can be modeled as an encoded in-
formation source that is decoded (processed) in several
steps to produce proteins. During these decoding steps, the
processed DNA is subjected to genetic noise which results
in several types of mutations. Transcription initiation cor-
responds to a process of frame synchronization where the
RNA polymerase detects the promoter sequences (biolog-
ical sync words). Translation initiation also corresponds
to a process of frame synchronization to detect the transla-
tion initiation signals (e.g. for prokaryotes this includes the
Shine-Dalgarno sequence and the start codon). This is fol-
lowed by a decoding process to map codons to amino acids.
Figure 1 shows a model for gene expression based on build-
ing blocks from communication theory. In this model, we
assume that mutations can also occur in the involved pro-
teins, i.e. RNA polymerase, ribosome, and tRNA. Other
similar models for gene expression are summarized in [6].

Figure 1: Communication theory model for gene expression.

On a larger scale, evolution can be modeled as a single
input multiple output (SIMO) antenna system. Given an
evolutionary scenario of multiple species that evolved from
a common ancestor, the ancestor can be modeled as the
transmitter and its sequence of bases as the output of the in-
formation source. This information is transmitted over the

branches of the evolutionary tree (phylogenetic tree) where
the leaves of the tree correspond to the receive antennas of
the SIMO system. The antennas receive the sequences that
one can observe in different species with errors (mutations)
occurring during the transmission process. These analogies
motivate the use of coding theory for genetics.

3 GENOMIC CODING THEORY

3.1 SOURCE CODING FOR DNA CLASSIFICATION

Special source coding algorithms have been developed
to compress genomic sequences by taking into account
their structural properties, e.g. DNACompress [7]. In [8],
we make use of source coding algorithms to approximate
a mutual information based distance measure for the clas-
sification of DNA sequences. The mutual information
I(Si;Sj) between two given sources Si and Sj can be
transformed into a bounded distance measure through nor-
malization by their maximum possible mutual information.
The resulting measure can then be expressed as

d(Si, Sj) = 1− I(Si;Sj)
min(H(Si),H(Sj))

, (1)

where H(Si) is the entropy of the source Si. The compres-
sion achieved on a sequence generated by a given source is
used to approximate its entropy. Moreover, the compres-
sion achieved on the concatenation of two sequences gen-
erated by the two compared sources is used to approximate
their conditional entropy [9].

To demonstrate the performance of the given distance
measure, we present results for differentiating between
non-genic regions (ng), exons (ex), and introns (in). As
content sequences, the first 50,000 nucleotides (50kb) of
each type are selected from human chromosome 19 (c19).
As unknown sequences, groups of nucleotides of differ-
ent sizes of each type are selected from human chromo-
some 1 (c1). For each unknown sequence i, the distance
d(SUi , SCj ) to every content sequence j is calculated. The
unknown sequence is then classified as the type of the con-
tent sequence yielding the smallest distance. Using DNA-
Compress with the given distance measure, all unknown
sequences were correctly recognized (see Table 1).

SUi \SCj c19ng-50kb c19in-50kb c19ex-50kb
c1ng-300kb 0.041-best 0.842 1.025
c1ng-13kb 0.651-best 1.013 1.009
c1in-300kb 0.933 0.585-best 1.014
c1in-13kb 1.000 0.052-best 1.068
c1ex-300kb 1.017 1.006 0.963-best
c1ex-13kb 0.985 0.944 0.830-best

Table 1: DNA classification using source coding.
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3.2 CHANNEL CODING FOR MODELING GENE EX-
PRESSION

Concepts from coding theory can be used to develop
biologically-motivated models for the processes of tran-
scription and translation. This allows the analysis of var-
ious interactions that take place in gene expression using
efficient computer simulations saving laboratory sources
and time spend on experiments. Moreover, it might help
in discovering new facts that allow further understanding
of these processes. The work of May established the first
concrete ideas for modeling gene expression interactions
based on algorithms inspired from coding theory [6].

The process of translation in prokaryotes is triggered
by the detection of a biological sync word known as the
Shine-Dalgarno sequence which is located around 10 bases
before the translation start codon AUG. It has been stated
that the last 13 bases of the 16SrRNA subunit of the ri-
bosome, that binds to the mature RNA, play an important
role in the detection of the Shine-Dalgarno sequence [10].
In [11], we model this detection/recognition system by de-
signing a one dimensional codebook consisting of the nine
sub-sequences with length N = 5 of the last 13 bases
of the 16SrRNA molecule, i.e. we obtain nine codewords
ci = [si, . . . , si+4], i ∈ [1; 9] where s = [s1, . . . , s13] de-
notes the sequence of the last 13 bases. A sliding window
is applied on a given noisy mRNA sequence to select sub-
sequences of length N and compare them with all code-
words in the proposed codebook. The codeword that re-
sults in the minimum Hamming distance is selected and
the obtained minimum metric value is recorded. For the
analysis, we apply the algorithm to 1500 E.coli translated
sequences annotated in the NCBI database. In addition, we
apply the algorithm on a set of E.coli sequences that con-
tain a start codon but are not translated. Average results for
both classes of sequences are plotted in Figure 2.
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Figure 2: Detection of translation signals.

The x-axis represents the position in the aligned se-
quences. It can be seen that the proposed algorithm is able
to identify the Shine-Dalgarno (peak at position 40) and the

start codon (peak at position 51) in the translated sequences
and, thus, is capable of differentiating between translated
and untranslated sequences. Moreover, these results sup-
port the arguments for the importance of the 16SrRNA in
the translation process.

To make biological use of the developed algorithm, it
was applied to test the effect of single point mutations in
the ribosome on protein synthesis. To do this, we have in-
troduced point mutations in all positions of the last 13 bases
of the 16SrRNA and executed the algorithm on the E.coli
data set. The obtained results are summarized in Table 2 by
quantizing into five levels the influence of these mutations
on detecting the Shine-Dalgarno (SD) and start codon sig-
nals. The levels are: – represents no influence, ⇓ a strong
negative influence, ↓ a weak influence, ↑ a weak positive
influence, and ⇑ a strong positive influence.

Table 2: Effect of mutations in the 16SrRNA on translation.

pos. 1 2 3 4 5 6 7 8 9 10 11 12 13
SD – – – ↓ ⇓ ⇓ ↓ – – – – – –

start – – ⇓ ↑ ↓ ↓ ↓ – ⇓ ↓ ↓ ↓ ↑

For example, results show that a mutation in position 5
has a strong negative influence on the recognition of the SD
signal, whereas a mutation in position 8 has no influence
since perhaps its role is just to introduce spacing at the mo-
ment of decoding the mRNA sequence. The obtained re-
sults showed complete agreement with some published ex-
perimental results on the effects of various mutations [11].

This work can be extended in several directions: i) De-
signing similar models for the process of transcription in
prokaryotes. ii) Designing similar models for gene expres-
sion in eukaryotes including translation, transcription, and
splicing. iii) Applying the developed models to genomes
of different organisms. iv) Using the developed models to
obtain new biological findings on gene expression.

3.3 ERROR CORRECTING CODES IN THE DNA

In contrast to prokaryotes, there seems to be a lot of
redundancy (non-coding DNA) in the genomes of eukary-
otes. In humans, for example, protein coding regions com-
prise only approximately 2% of the whole genome. In fact,
it has been observed that the complexity of an organism
and its ratio of non-coding to coding DNA is positively
correlated [12]. Furthermore, it has been shown that there
are several conserved non-coding sequences among species
which is a strong indicator of their important functional-
ity [13]. These facts raise the following intriguing ques-
tions: i) Why are higher organisms equipped with so much
redundancy (non-coding DNA)? ii) Can evolution be mod-
eled as an encoder which adds redundancy to the genomic
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information? iii) Can one prove the existence of some form
of error correcting codes in the structure of the DNA?

From a coding theory point of view, there is a need to
find methods for the detection of a coding structure in a
received noisy data sequence whose encoder and decoder
are completely unknown. As evolution had a lot of time
to optimize its information transmission system, it might
be a very complex code. Earlier work has concentrated on
gene sequences (i.e. coding DNA) or on prokaryotic organ-
isms with relatively small genomes [2] [3]. However, as the
genes are already constrained by the structure of the genetic
code, it is unlikely that there are enough degrees of free-
dom to form an error correcting code. Moreover, simple
organisms like prokaryotes have short life cycles and bene-
fit from fast adaptation to a changing environment. That is
why they have significant higher mutation rates and smaller
genomes than more complex organisms such as eukaryotes.
Therefore, it is unlikely that an error correcting code can be
found in their genome. As a result of these observations,
we believe that if an error correcting code would exist in
the DNA, then it is most appropriate to search for it in the
conserved non-coding regions of eukaryotic organisms.

In [14], we introduce a novel Kullback-Leibler based
method that can identify functional redundancy in the
DNA. Evolution is commonly described by a set of para-
meters ψ, representing the phylogeny and a model of mu-
tations [15]. We assume an ancestor input sequence x[n]
is transmitted over an evolution channel to output at the
receiver the vector y[n]. The channel is characterized by
the transition probabilities py(y|x; ψ) conditional on x and
parameterized over ψ. The channel varies over n as dif-
ferent DNA regions have been subject to different substi-
tution rates according to the significance of the biological
importance of the information they carry. From this point
of view, estimating the conservation of a particular DNA
region amounts to the estimation of how good the trans-
mission channel was in this region.

From a communication theoretic viewpoint, the max-
imum conservation is equivalent to the case of noiseless
transmission, i.e. the transmitted base x[n] is observed un-
changed in all components of the receive vector y[n]. In
this situation, the channel shall be specified by py(y|x; ψ0)
and the receive vector y[n] is distributed according to
py(y; ψ0). For the comparison with the maximum con-
servation case, we calculate the maximum likelihood es-
timate ψ̂ of the evolutionary model that most likely gener-
ated an ensemble of receive vectors Y [n] in a sliding win-
dow over the observed data. Then, we calculate the prob-
ability mass function py(y; ψ̂) for a column parameterized
by ψ̂ and compare the estimated distribution with the one
corresponding to the maximum conservation process using
the Kullback-Leibler distance

s[n] = D
(
py(y; ψ̂)||py(y; ψ0)

)
. (2)

The score s[n] is associated to the column in the middle of
the sliding window. Note that a low score corresponds to a

Figure 3: Top: Conservation score indicating conserved regions.
Bottom: Visualization of the respective genomic data.

good channel and thus a highly conserved region. Figure 3
presents results for the estimation of conservation in addi-
tion to the underlying genomic data. Bases are encoded
with a unique color and maximal conserved columns are
marked in black. The proposed distance based score signal
reflects the different degrees of conservation and, in con-
trast to earlier methods, does not rely on an accurate model
of neutral evolution [13] [16] [17].

This work can be extended in several directions: i) Ex-
panding the coding theoretic analysis of the conserved non-
coding sequences. ii) Developing methods for the blind de-
tection of error coding structure and applying them to con-
served non-coding regions. iii) Investigating dependencies
between coding and non-coding sequences using phyloge-
netic and information theoretic methods.

3.4 CHANNEL CODING STRUCTURE IN THE GE-
NETIC CODE

The discovery of the mapping of codons to amino acids
(known as the genetic code) was a major advance in the
field of molecular biology [18]. The genetic code has 64
codons that uniquely map to 20 amino acids which is a re-
dundant mapping. There are many research efforts trying
to study the evolution of the genetic code and its optimal-
ity properties. The approach used to test optimality is based
on generating other mappings of codons to amino acids and
trying to compare them with the natural genetic code using
physio-chemical metrics such as polarity and hydrophobic-
ity (e.g. see [19]).

One can easily show that codons which code for one
amino acid are more closely related to one another (in se-
quence) than they are related to codons that code for other
amino acids. In other words, codons that code for one
amino acid differ in several cases by just one nucleotide.
Thus, single nucleotide mutations (especially in the third
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location) will often not change the resulting amino acid
rather than lead to an error. Investigating protein substi-
tution matrices, another interesting observation is that the
smaller the number of codons per amino acid, the higher
the self substitution score for that amino acid. A higher
self substitution score implies that the amino acid was more
often conserved in its location within evolutionary related
protein sequences.

Based on the given observations and analysis, the fol-
lowing open research questions can be raised: i) Can one
justify the structure of the genetic code using channel cod-
ing theory? ii) Can one prove the optimality of the genetic
code using channel coding theory? iii) Is there a relation-
ship between the number of possible codons that result in
a given amino acid and the importance of the amino acid?
iv) Is there a relationship between the redundant structure
of the genetic code and DNA repair mechanisms?

4 CONCLUSIONS

In this work, we present recent advances in the emerg-
ing interdisciplinary field of genomic coding theory. Ge-
nomic coding theory deals with applying concepts and
techniques from the field of coding theory to problems
from the field of molecular biology. The presented appli-
cations include source coding for DNA classification and
content recognition, channel coding for modeling gene ex-
pression processes, existence of error correcting codes in
the DNA, and channel coding structure in the genetic code.

The following are some practical benefits of this re-
search work: recognition of coding regions in organisms
with similar characteristics, gene discovery within a given
organism, improving the process of protein synthesis in ge-
netic engineered proteins, etc. As a summary, this work
will help in stimulating the interdisciplinary research ef-
forts to apply techniques from the field of communication
theory to other problems from the field of genetics.
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