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1     Specific Aims 
 
Identification and annotation of all the functional elements in the genome, including genes and regulatory 
sequences, is a fundamental challenge in genomics and computational biology. Since regulatory 
elements are frequently short and variable, their identification and discovery using computational 
algorithms is difficult. However, significant advances have been made in the computational methods for 
modeling and detection of DNA regulatory elements. This research proposes a novel use of techniques 
and principles from communications engineering, coding and information theory such as the ones used in 
source and channel coding, frame synchronization, pattern recognition, wavelet analysis, and discrete 
Fourier Transform for modeling, identification and analysis of genomic regulatory elements and biological 
sequences. 
 
It has become increasingly evident that the Escherichia coli species is comprised of clonal lineages that 
show biased distribution among environmental, food, and human clinical samples.  The past knowledge 
of serotype- or strain-specific prevalence in foods and human infections substantiates the need to 
elucidate the unique genetic, physiological, and ecological characteristics of this pathogen.  In the 
proposed study, we will combine our experimental data from functional genomics based approaches (i.e. 
DNA microarrays) with the in silico analysis as described above to uncover the genetic and molecular 
mechanisms that different Escherichia coli species use to regulate their genome expression in response 
to the stimuli and stresses in the natural environment, foods and human or animal species.  The proposed 
experiments build logically from our knowledge of transcription factors and comparative genome analysis 
of diverse Escherichia coli populations. The combination of the experience of our investigators and the 
studies presented in the preliminary data section underscore the likelihood that the proposed project will 
yield highly useful results.  This proposal represents one of the first attempts to explore information theory 
and correlate to the functional consequences in the genomes of prokaryotic pathogens. 
 
Communications and information theory has proven to provide powerful tools for the analysis of biological 
signals [1]–[5]. An up-to-date summary of ongoing research can be found in [6]. The genetic information 
of an organism is stored in the DNA, which can be seen as a digital signal of the quaternary alphabet of 
nucleotides = { , , , }X A C G T . An important field of interest is gene expression, the process during which 
this information stored in the DNA is transformed into cell functions like oxygen transport etc., largely by 
coding for the expression of specific proteins that carry out and regulate these processes. Protein gene 
expression takes place in two steps: transcription and translation (see Figure 1). 
 
 

 
 

Figure 1: The process of protein synthesis (gene expression) 
 
Informational analysis of genetic sequences has provided significant insight into parallels between the 
genetic process and information processing systems used in the field of communications engineering.  
 
This work contributes to the field of bioengineering and biology through the use of information theory, 
communications theory and coding theory principles. Initially, our research will study and analyze 
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transcription and translation initiation mechanisms in prokaryotes (e.g. E. coli, as well as other bacteria), 
and then will be extended to study other types of organisms (e.g. eukaryotes).  
 
The main goals of this work are to:  

i) develop an analogy between information transmission in communications engineering and 
gene expression. Find models for prokaryotic and eukaryotic organisms that represent the 
genetic and molecular mechanisms that different organisms use to regulate their genome 
expression; 

ii) validate these biologically-motivated coding models for the processes of transcription and 
translation, and use these models to gain new insights on the biological interactions between 
the RNA Polymerase and DNA, and  ribosome and mRNA;  

iii) initially analyze gene structure using a variable-length codes (VLC) approach and iterative 
decoding algorithm to detect genes and regulatory sequences. This approach will have to be 
modified for organisms that do not exhibit the prefix condition. This will lead  to a better 
understanding of the structure and correlations between coding and non-coding regions of 
the whole genome;  

iv) introduce an improved gene and regulatory sequences identification approach that will 
provide a solution for current limitations that exist in gene-finding programs by using pattern 
recognition [18], Discrete Fourier Transform (DFT) [19], and Wavelet analysis [20]; 

v) develop new computational algorithms and databases for systematic identification of 
transcriptional regulators and regulons in new genomes as they become available; and 
integrate genome expression data with known and predicted regulons and metabolic 
pathways; 

vi) use principles of error control coding theory to interpret the genetic translation and 
transcriptions mechanisms; 

vii) use the proposed models to test the effect of mutations in the ribosome on protein synthesis, 
and predict the effect of other possible mutations; 

viii) apply and extend the proposed models to prokaryotic and eukaryotic organisms to uncover 
the genetic and molecular mechanisms that different organisms use to regulate their genome 
expression in response to the stimuli and stresses; 

ix) and most importantly, integrate research findings from this project with educational and 
extension programs and activities at Illinois Institute of Technology. This is one of the key 
goals in this proposal in support of NSF's goals to foster integration of research and 
education through the programs, projects, and activities. PIs of this proposal are actively 
engaged in various teaching and educational programs and are dedicated to providing 
diverse learning opportunities to students and general public with different educational 
backgrounds. We plan to integrate our research with different types of educational and 
extension programs. The extension activities will include a wider dissemination of findings at 
appropriate professional scientific meetings as well as the development of more targeted 
training and educational materials that could be used through a number of different 
communication routes.  Specifically, we will (1) Present our findings in seminar lectures in the 
Electrical and Computer Engineering (ECE), Biology, Computer Science (CS), Math, and Bio-
Medical Engineering (BME) departments at Illinois Institute of Technology; (2) Implement new 
research findings as teaching materials (such as applications of new computational 
algorithms in identifying genomic regulatory elements) into the current undergraduate and 
graduate core curriculum including BIOL562 Functional Genomics currently taught by Dr. 
Zhang; (3) Develop a new interdisciplinary course “Computational Biology and 
Bioinformatics” for senior undergrad and entry-level grad in ECE, Biology, CS and BME 
majors; (4) Provide Special Projects (these are courses with research credits) to minority 
undergraduate and graduate students in ECE, BME and Biology majors; (5) Develop joint 
educational program for high school students in the Chicago area (we have hosted such 
programs at NCFST every year); (6) Organize educational activities and participate in 
Science Fairs for the general public through the Chicago Council on Science and 
Technology; (7) develop IPRO (Interprofessional Project program) that joins together 
students from various academic disciplines to work as a team.  Furthermore, we plan to 
collaborate with other centers of bioinformatics (including the Center for Computational 
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Figure 2: Protein Synthesis (Gene Expression) 

Biology and Bioinformatics at the University of Maryland), Bioengineering Departments and 
Research Institutes (such as the Pritzker Institute) to foster education by applying 
engineering principles to cell biology, integrated with applied mathematics, computational 
science, bioengineering and medical sciences.  

x) encourage the participation of students (women/men) from underrepresented and minority 
groups, and people with disabilities in our educational and extension programs.  

 
This research will allow for the analysis of various interactions that take place in gene expression using 
communications models that will allow savings in laboratory resources and time-consuming laboratory 
experimentations. Moreover, it will lead to better understanding of these complex processes. 
 
2     Background and Significance 
 
Here we briefly describe the process of gene expression (transcription and translation) and some of the 
regulatory sequences that we will use in our research.  
 
2.1     Gene Expression 
 
Gene expression is the translation of information encoded in a gene into protein or RNA. It takes place in 
two basic steps: transcription and translation (see Figure 2).  
 
During transcription, a portion of the genomic 
DNA is copied into RNA (mRNA) except that 
the base T is substituted by U. For protein 
coding genes, this RNA is eventually 
translated (see Figure 2) into a chain of amino 
acids that forms a protein according to the 
mapping rule described by the genetic code 
[10]. In prokaryotes, the RNA is essentially 
competent to do this immediately; however in 
eukaryotes, there is an intermediate step in 
which the message is processed into a 
mature mRNA by an editing process, itself 
dependent on an additional layer of 
sequences. At all of these stages, regulatory 
signals need to operate. Once the mRNA is 
produced, these messages are then 
interpreted by the cellular machinery 
(ribosome, etc.) to produce desired effects (the construction of new proteins). On the other hand, there is 
a large subset of genes that act only at the RNA level, and they have their own signals, such as RNA 
structural signals (hairpins etc) or homology to other protein encoding genes that they regulate. 
 
Regulatory process operates at each step. In the transcriptional step, individual messages need to be 
identified, often only under specified circumstances, and sent (RNA synthesized). This process involves 
signals termed promoters, which initiate this process. There are many types of promoters and one of the 
most common and most studied types in E. coli is illustrated in Figure 3.    
 
 

 
 

 
 
 
 
 

Figure 3: Structure of mRNA Sequence 
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2.2     Regulatory Sequences 
 
A regulatory sequence (also called a regulatory region or a regulatory element, RE) is a segment of DNA 
or RNA which exerts some control over the process whereby information in the sequence is 
communicated or utilized. The usual fashion by which these REs act is by binding some regulatory 
proteins, which then affects some cellular process involving this information. For instance,  
• transcription factors bind to promoters and recruit RNA polymerase to be available to transcribe the 

information downstream of the promoter, and so cause the information in the gene to be moved from 
the genome to mRNA.  

• The ribosome binds to ribosome binding sites (Shine Dalgarno sites in bacteria) and help initiate 
transcription, which processes this information into a different form, from RNA to protein, in a process 
called translation. 

 
In our preliminary work, we use regulatory sequences (e.g. promoters, enhancers, silencers, locus-control 
regions, Shine-Dalgarno, etc) that are involved in the process of gene expression (transcription and 
translation). Preliminary results shows that in prokaryotes the detection of these sequences can be 
helped using initially the algorithms described in sec 4.1 and a variable length code (VLC) model 
approach and iterative decoding algorithm (section 4.2). In the case of eukaryotes we will develop similar 
algorithms that will allow gaining knowledge in the gene structure and identifying regulatory sequences. 
 
2.3     Biological Significance 

To a very good approximation, every cell of a given species has the same DNA – yet they can appear 
and function very differently. This is most obvious in multicellular organisms, such as higher eukaryotes, 
in which different tissue types comprise the body. These cell types typically have their own subset of 
genes expressed, and their own subset of regulatory signals. Even in unicellular organisms, such as 
bacteria, cells can exist in various states, depending on environmental cues. This is often mediated 
through changes in the metabolism which are controlled by complex regulatory mechanisms. Functional 
characterization of individual transcriptional regulators at nucleic acid sequence levels is a first step to 
elucidate such regulatory mechanisms that coordinate the activity of different metabolic and signaling 
pathways.  

To uncover the global transcriptional regulatory architecture of metabolic networks we propose to develop 
new computational tools that will integrate microarray expression data from this study with known or 
predicted regulatory elements in fully sequenced genomes. Initially we will target E. coli as a simple 
prokaryotic model organism, but will expand this to other bacteria and eukaryotes. An outline of our 
computational approach is shown in Figure 4. 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 4: An outline of our computational approach 
 

Detection of transcriptional units and their promoter sites is one of the keys to understanding the regulon 
structure of bacterial genomes. Predicting regulons, in turn, gives us strong hints about gene function.  
Computational detection of promoter and terminator sequences is the only practical means of 
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systematically identifying large numbers of regulons today, and few experimentally verified regulons exist 
outside of B. subtilis and E. coli.  Eukaryotic transcription factor sites are much more variable, and less 
well understood. The criteria by which Transcription Factors (TFs) recognize these signals are not entirely 
clear; so that an exact description of these signals in not possible. Rather, consensus binding sequences 
based upon known example binding sequences have been built up. There are two ways in which this 
confounds a simple identification of new such TF binding sites: 
• The redundancy of the recognition sequence means that the signal is not one specific code, but 

rather a subset of codes  
• Our knowledge of the requirements of this code is only approximate. It is largely built up by 

consensus analysis of a known subset of codes for each TF. These are typically some of the 
strongest activating codes, but some of the other weaker codes, or other cryptic codes, are exactly 
what we are looking to detect. 

 
Several previous computational methods (Carafa et al. 1990; de Hoon et al. 2005) have relied on simple 
decision boundaries to separate promoters from non-promoters after training on experimentally known 
terminating and non-terminating sequences.  Other studies have considered only the DNA binding portion 
of potential promoters (Washio et al. 1998; Unniraman et al. 2002).  Due to lack of sequence data, 
previous systems (e.g. Carafa et al. 1990; Lesnik et al. 2001) have tended to focus on E. coli or on only a 
portion of the now-available genomes.  In this study, we will develop a computational system for rapid and 
accurate predictions of transcriptional regulators in any genomic data, starting with E. coli and then 
extending our results to eukaryotes.  
 
The algorithms developed will search genomic DNA for specific regulatory signals and assign each 
candidate a score related to the likelihood that it arose by chance. We will utilize existing data bases of 
regulatory protein binding sites as well as compiling new information as it becomes available, and then 
use our new developed algorithms to search entire genomes of these regulatory sequences. The relative 
organization of these signals will then be used to detect specific putative genes, as well as the conditions 
under which these genes would be expressed. Examples of this organization include heuristic rules such 
as: 
• promoter sequences occur 5’ to genes. 
• the message transcribed by these genes should be sensible: 

o if it is a protein coding gene, is should contain other signals for ribosome binding and translation 
initiation, and an open reading frame. 

o in eukaryotes, other signals for RNA processing should be present, including exon splicing 
signals. 

o if it is a noncoding gene, appropriate RNA structure and sequence should be present 
• in bacteria, appropriate terminators should be present at the 3’ end. 
 
As has been done with TransTermHP (Kingsford et al. 2007), we will assess the sensitivity and specificity 
of our predictions using a set of experimentally verified regulons (both from the literature and from this 
study). The algorithms developed will be based on sequence characteristics of all known bacterial 
transcriptional regulator families. The new system will be easily portable, user-friendly, and will be 
released as free, open-source software. The speed of our search algorithm facilitates interactive 
experimentation and refinement and allows us to add more genomes easily; it also includes (1) a more 
accurate scoring scheme; (2) more informative output; (3) the ability to handle overlapping genes; (4) 
better handling of gaps in hairpin structures; (5) the ability to handle gene annotations as either a simple 
list or in NCBI’s ptt format.  
 
Initially we will develop these tools in prokaryotic systems, using E. coli as a test organism to validate the 
system. This will involve the following major components: 
• Identification of consensus sequences for  promoters i.e. transcriptional start sites 
• Identification of translational signals such as Shine-Dalgarno and S1 protein ribosome binding sites; 

as well as terminators 
• Identification of noncoding RNA (ncRNA) genes 



 

Cl Codeword 
C1 UAAGG 
C2 AAGGA 
C3 AGGAG 
C4 GGAGG 
C5 GAGGU 
C6 AGGUG 
C7 GGUGA 
C8 GUGAU 
C9 UGAUC 

Table 1: 16SrRNA Codebook

Pairs of bases Energy 
AA  -0.9 GA  -2.3 
AU  -0.9 GU  -2.1 
UA  -1.1 CA  -1.8 
UU  -0.9 CU  -1.7 
AG  -2.3 GG  -2.9 
AC  -1.8 GC -3.4 
UG  -2.1 CG  -3.4 
UC  -1.7 CC  -2.9 

Table 2: Energy Doublets [17]

• Study relationships (correlations, distance metrics, etc) between coding regions and noncoding 
regions and regulatory sequences 
 

We will then expand this to eukaryotic organisms, namely humans. This is a substantially more complex 
task for several reasons: 
• Eukaryotic regulatory elements, especially promoters, are much more complex and heterogeneous, 

composed of several independent parts as well as unique elements specific for only one or a few 
genes. In this case homology modeling using known promoters from related species can be a useful 
tool. 

• Eukaryotic RNA processing is a complex, and as yet incompletely understood process, which 
requires detection of both processing (e.g. poly adenylation) signals as well as exon splicing signals 
(5’- and 3’ splice sites;  branch point sites; as well as exon splicing enhancers and silences ESE and 
ESS).  

 
3     Preliminary Studies 

 
The following section portrays our preliminary research work, models, algorithms and techniques that we 
used to model and analyze the process of translation in gene expression.  
 
3.1 Coding Theory, Communications and Information Theory Based Modeling 
3.1.1     Coding Theory Based Models 
 
The process of translation in prokaryotes is triggered by the detection 
of an RE known as the Shine-Dalgarno (SD) sequence. Physically, this 
detection operates by homology mediated binding of the RE to the last 
13 bases of the 16S rRNA in the ribosome [8]. In our work [1] and [2], 
we have modeled this detection/recognition system by designing a one 
dimensional variable-length codebook and a metric. The codebook 
uses a variable codeword length N between 2 and 13 using the 
Watson-Crick complement of  the last 13 bases of the 16S rRNA 
molecule, i.e. we obtain (13-N+1) codewords; 1 2 1[ , ,..., ]+ −=i i Nc s s s ; 

[1,13 1]∈ − +i N  where 1 2 13[ , ,..., ]=s s s s  denotes the complemented 

sequence of the last 13 bases [UAAGGAGGUGAUC] . A sliding 
window of size N is applied to the received noisy mRNA sequence to 
select subsequences of length N and match them with the codewords 
in the codebook (see Table 1). The codeword that results in a minimum 
weighted free energy exponential metric between doublets (pair of 
bases) is selected as the correct codeword and the metric value is 
saved. Biologically, the ribosome achieves this by means of the 
complementary principle. The energetics involved in the rRNA-mRNA 
interaction tells the ribosome when a signal is detected and, thus, when 
the start of the process of translation should take place. In our model, 
the a modified version of the method of free energy doublets presented 
in [17] is adopted to calculate an energy function (see  equation 1) that 
represents a free energy distance metric in kcal/mol instead of 
minimum distance (see Tables 2) [4]. Our algorithm assigns weights to 
the doublets such that the total energy of the codeword is increased 
with a match and decreased if a mismatch occurs, and stresses or de-
emphasizes the value when consecutive matches or mismatches occur. 
The energy function has the following form: 

δ
1=

=∑
N

k k
k

E w                                                                          (1) 



 

where δk  means a match (δ 1=k ) or a mismatch (δ 0=k ) and kw  is the weight applied to the doublet in 

the thk  position. The weights are given by: 
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where σ  and σ%  are the numbers of consecutive matches or mismatches and ρ is an offset variable 
updated as follows  
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where a is a constant that will determine the exponential growth of the weighting function.  
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Figure 5: Comparison of SD signal (position 90), start (position 101) and termination (position 398) codon 

between the algorithm used in [6] and the weighted algorithm (N=5, a=1.5) 
 
For larger values of a the exponential will grow faster as the number of consecutive matches increases 
(hence increasing the likelihood that the right sequence is enhanced) making the algorithm more sensible 
to the correlation in the sequence. Not only does this algorithm allow controlling the resolution of 
detection (by the choice of the parameter a) but also allows deciding the exact position of the Shine-
Dalgarno on the genes rather than using an average. 
 
For the analysis, sequences of the complete genome of the prokaryotic bacteria E. coli strain MG1655 
and O157:H7 strains were obtained from the National Center for Biotechnology Information. Our 
proposed exponentially weighting algorithm was not only able to detect the translational signals (Shine-
Dalgarno, start codon, and stop codon) but also resulted in a much better resolution than the results 
obtained when using the codebook alone (without weighting). Figure 5 shows average results for the 
detection of the SD, start and stop codons being compared to previous work [4]; it can be seen that the 
proposed algorithm is able to identify the Shine-Dalgarno (peak at position 90) and the start codon (peak 
at position 101) and the stop codon (peak at position 398). Moreover, these results support the 



 

arguments for the importance of the 16S rRNA in the translation process. Different mutations were tested 
using our algorithm (section 3.3) and the results obtained further certified the correctness and the 
biological relevance of our model. 
 
3.1.2     Communications and Information Theory Based Models 
 
The previous model discussed in sec 3.1.1 is based on coding theory (codebook). We have also 
developed other four different methods (sec 4.1.2) for detection of transcription factor binding sequences, 
(TFBS). These methods are also based on concepts in communications and information theory such as 
correlation (method I), Euclidean distance (method II), matched filter (method III), and correlation based 
exponential metric (method IV). These and the previous method will be used to study the effects of 
mutations in different parts of the coding and non-coding regions. 
 
To show how the four previous methods behave, we arbitrarily selected a 71-bases-long DNA sequence 
as a test sequence. Then, we chose an 11-bases-long sequence starting at position 13 to be a 
hypothetical binding sequence. We inserted this binding sequence at position 53 with two bases being 
changed to get a partial match of the original sequence. We applied the four previous methods to detect 
this binding sequence. Figures 6 show these methods are accurately detecting the binding sequence as 
expected. A total match occurs at position 13 (longer peak or dip), and a partial match occurs at position 
53 (shorter peak or dip).  
 
There are many different ways that DNA can be changed, resulting in different types of mutation. 
Examples include substitution, Insertion, deletion, and frameshift. In Figure 6 , we inserted a sequence of 
bases at position 53 to be detected later using the proposed methods. This can be viewed as an insertion 
type of mutation. The proposed methods were able to detect these sequences at their exact positions. 
Other mutations types will be analyzed using the proposed methods. 
 
Substitution is a mutation that exchanges one base for another (that is, a change in a single "chemical 
letter" such as switching an A to a G). Insertions are mutations in which extra base pairs are inserted into 
a new place in the DNA. Frameshift: Since protein-coding DNA is divided into codons three bases long, 
insertions and deletions can alter a gene so that its message is no longer correctly parsed. These 
changes are called frameshifts.  
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Figure 6: The Four Proposed Methods Results (a) Euclidean Distance (b) Cross Correlation (c) 

Exponential detection, (d) Free Energy. 



 

Figure 9: A tree representation of genes

1

2
3

64

. . 

1 

2 
3 

64 

..
..

1

2
3

64

. . 

1 

2 
3 

64 

. . 

1 

2 
3 

64  Possible 
gene 

1

2
3

64 ..

Possible 
gene 

..

1

2

3

64

 
Applying these methods to detect the last 13 bases of the 16S rRNA molecule in the given mRNA 
sequence allows not only detecting the translational signals at their exact matching locations (as previous 
methods in sec 3.1.1, Figure 5), but also “interestingly” distinguishing coding from noncoding regions. 
This new finding suggests the last 13 bases of 16S rRNA molecule have a higher correlation with the 
coding regions. Preliminary results for method I (sec 4.1.2.) are shown in Figures 7 and 8 from which 
coding and noncoding regions can be identified. This interesting result will be further analyzed and 
researched using other binding sequences. We will need to define quantitative measures to analyze 
these results. Such measures can be based on the mean Square Error (MSE), correlation, Hamming or 
Euclidean distances. Overall, we will study how regulatory sequences correlate between themselves and 
the different segments of the noncoding and coding regions. We will also need to correlate these results 
with their biological significance. 
 

90 101 398
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Position

A
ve

ra
ge

 N
um

ve
r o

f M
at

ch
es

/p
os

iti
on

Detected Translation Signals Using Number of Matches Algorithm

Coding
region

Noncoding
region

Noncoding
region

90 101 398
0

50

100

150

200

250

300

Position

A
ve

ra
ge

 E
xp

on
en

tia
l D

et
ec

tio
n 

m
et

ric

Detected Translation Signals Using Exponential Detection Metric Algorithm

Noncoding
region

Noncoding
region

Coding
region

 
       Figure 7: Method I (Number of Matches) Result       Figure 8: Exponential Detection Metric Results 
 
Using the four developed methods, we will study the effect of mutations in last 13 bases of the 16S rRNA 
molecule on the correlations with coding and non-coding regions.  
 
3.2 Variable Length Code Modeling 
  
Preliminary results show that genes (the coding regions) can be modeled as prefix codes (i.e. no gene is 
a prefix of any other gene in the whole genome). Adding up the non-coding regions we can still have the 
prefix condition satisfied. This can be proven using the fact that prefix codes should satisfy the Kraft's 
inequality which characterizes the sets of codeword lengths that are possible in a prefix code. For 
clarification, let each source symbol from the alphabet 
= 1 2[ , ,..., ]nS s s s   be encoded into a uniquely decodable code 

over an alphabet of size r  with codeword lengths 1 2, ,..., nl l l , 
then 

=

⎛ ⎞ ≤ ∈⎜ ⎟
⎝ ⎠

∑
1

1
1, {1,2,3,..., }

iln

i

i n
r                       

(4) 

where S  denotes the set of all genes, n  is the 
number of genes, il  is the length of the thi gene 
(in codons), and r  is the alphabet size and here is 
equal to 64 denoting the number of all possible 
codons. 
 
Figure 9 shows a general proposed tree diagram 
representation of all possible genetic sequences of any length. 
Here we have mapped the 64 codons to the numeric alphabet 
{1, 2… 64}. Hence any genetic sequence (coding + non-
coding regions) can be mapped to a certain branch in the 
tree. The terminal node in each branch is the stop codon. In 



 

a prefix code, the codewords are only associated with the terminal nodes. The code for any gene can be 
obtained by traversing the tree from the root to the terminal node corresponding to that gene. In Figure 9, 
the orange (upper) branch corresponds to the “gene code” {1, 3, 64, 64, 1}, and the blue branch 
corresponds to the “gene code” {64, 2, 64}.  
 
Since prefix codes are uniquely decodable, a message (DNA) can be transmitted as a sequence of 
concatenated codewords (coding and noncoding regions) and hence can be decoded instantaneously. An 
iterative decoding algorithm based on VLC decoding techniques [21] can be developed for gene 
identification. If a gene of length i (which corresponds to a certain branch in the tree diagram) is identified, 
then all genes of length j (j > i) that branch out from this specific gene (i.e. (j‐i)64  genes) will be eliminated 
(out of the search). This will speed up the finding of genes by eliminating in the search the genes that 
have the detected gene as a prefix (Our proposed gene identification algorithm is described in section 
4.2).  
 
Some of the algorithms used in prefix decoding (such as conventional look-up table approach), can be 
adapted here to be used in decoding the DNA sequence into the set of all genes. A table of all possible 
genes that code for proteins (# of proteins is ~104.5) can be assumed to be our look-up table. Moreover, 
tree search algorithms can be utilized here as well. The basic principle is that a node is taken from a data 
structure, its successors examined and added to the data structure. By manipulating the data structure 
(the DNA in our case); the tree is explored in different orders for instance level by level (breadth-first 
search [22]) or reaching a leaf node first and backtracking (depth-first search [23]). Other examples of 
tree-searches include iterative-deepening search [24], depth-limited search [24], bidirectional search [25], 
and uniform-cost search [24]. We also can make use of the information that regulatory sequences 
corresponds to specific transitions in the tree (trellis) path and these sequences are found at relative 
positions with respect to the start/stop codons. 
 
Prefix property should be also verified when using an alphabet of 20 amino acids instead of an alphabet 
of 64 codons (more compact representation).  
 
3.3 Mutation Analysis 

 
In our preliminary work [1] [2] based on the codebook model, we have applied our proposed algorithm to 
test the effect of single point mutations in the ribosome on protein synthesis. To do this, we have 
introduced point mutations in silico in all positions of the last 13 bases of the 16S rRNA and executed the 
proposed algorithm on the E. coli data set. The obtained results totally agreed with published 
experimental results in terms of their effect on the level of gene expression. Another published record of 
the behavior of the protein synthesis under mutations in the 3’ end of the 16S rRNA, was done by Hui and 
De Boer [9]. These two mutations were also tested using our proposed model and results (Figures 10 and 
11) totally matched laboratory experimentation as well [1] [2]. This in turn certifies the correctness and the 
biological relevance of our proposed model.  
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        Figure 10: Hui and De Boer mutation                               Figure 11: Jacob mutation 
 



 

This mutation analysis will be further carried out using the other four methods discussed in sec 3.1.2 and 
4.1.2.  
 
4     Research Design and Methods 
 
Analyzing DNA processing in gene expression, many similarities with the way engineers send digital 
information in communication systems come into view. The DNA can be modeled as an encoded 
information source that is decoded (processed) in several steps to produce proteins. During these 
decoding steps, the processed DNA is subjected to genetic noise which results in several types of 
mutations. Transcription initiation corresponds to a process of frame synchronization where the RNA 
polymerase detects the promoter sequences (biological sync words). Translation initiation also 
corresponds to a process of frame synchronization to detect the translation initiation signals (e.g. for 
prokaryotes this includes the Shine-Dalgarno sequence and the start codon). This is followed by a 
decoding process to map codons to amino acids. Figure 12 shows a model for gene expression based on 
building blocks from communications theory. In this model, we assume that mutations can also occur in 
the involved proteins, i.e. RNA polymerase, ribosome, and tRNA. Other similar models for gene 
expression are summarized in [7]. 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

Figure 12: Communication theory model for gene expression 
 
Transcription involves decoding the noisy DNA sequence into an mRNA sequence. Mapping this 
decoding into a decoding matrix (parity check matrix) will provide insight of the error correction or 
detection in this conversion. Results will provide invaluable information about transcription and its ability 
of processing the correct decoded sequence. The work of May [7] established the first concrete ideas for 
modeling gene expression interactions based on algorithms inspired from coding theory [27] [28] [29]. 
 
In continuous and packet data transmission, successful decoding of a transmitted data stream at the 
receiver side strongly depends on the choice of the synchronization (sync) word that indicates the 
beginning of the message and thus needs to be detected reliably. Analogously, biological sync words 
indicate the beginning of a gene, i.e. they mark the sequence in the DNA that needs to be copied during 
transcription. These biological sync words are the promoter (and other transcription factor binding 
regions) and terminator regions, which identify the limits of the gene (message). In protein coding genes, 
this message goes through another cycle, in which it is transmitted to the translational machinery, which 
has to identify translational start and stop signals (Shine-Dalgarno or Kazak sequences in prokaryotes 
and eukaryotes respectively; and start and stop codons; as well as other signals such as IRES 
sequences). This analogy between frame synchronization in digital data transmission and transcription 
and translation initiation provides a powerful tool for promoter analysis. Promoters can be seen as 
biological sync words that need to be detected reliably by the protein sigma factor. Research in 
molecular biology has focused on bacterial promoter regions for decades, however, without 
addressing the presented aspects of a sequence’s detectability. Our approach helps to bridge this 
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gap which demonstrates once more the importance of communications theory for the interpretation of 
processes in molecular biology.  
 
Table 3 summarizes the comparison of digital communication systems and transcription and translation 
initiation. 
 

Table 3: Comparison of Frame Synchronization and Bacterial Transcription and Translation Initiation 

 
 

Digital Communications 
 

Transcription Initiation Translation Initiation 

Data 

 
binary, quaternary or 
larger alphabet data 

streams 
 

quaternary DNA sequence 
(can be a larger alphabet) 

quaternary mRNA sequence 
(can be a larger alphabet) 

Marker 

 
binary or quaternary 
synchronization word 

 

two quaternary promoter 
regions 

quaternary Shine-Dalgarno 
region 

Detection 
 

Correlator 
 

sigma subunit of RNAP 16s rRNA molecule 

Decision 
Criteria 

 
correlation between sync 

word and data 
 

binding energy between 
sigma factor and DNA 

binding energy between 
ribosome and mRNA 

 
Our research will address the goals described in section 1 (Specific Aims) with a special emphasis on 
goals ix and x. The following sections will describe our research and design methods that are going to be 
considered in this work.  
 
3.4 Coding Theory, Communications and Information Theory Based Modeling 
3.4.1 Coding Theory Based Modeling 
 
Our research is directed to use the models developed in our preliminary work and variations of them to 
gain new insights on the biological interactions between the RNA polymerase and DNA on one side, and 
ribosome and mRNA on the other side. We have used an exponential metric with a one-dimensional 
variable length codebook. Our future work will consider: 

1. Applying different algorithms for regulatory sequence detection that will be adapted to detect start 
and stop codon locations as well. 

2. Using autocorrelation and cross-correlation functions to analyze coding and non-coding regions in 
DNA sequence. This will allow for detecting common patterns that repeat along DNA sequence. 

3. Studying the relationships between coding and noncoding regions and regulatory sequences 
 
3.4.2 Communications and Information Theory Based Modeling 
 
The process of detecting a Transcription Factor Binding Sequence (TFBS) in the DNA sequence can be 
achieved using the detection techniques used in communications engineering. Based on this analogy, 
concepts like correlation, convolution, Euclidean distance, matched filter, and certain metrics can be 
utilized in this detection process. The following four methods are based on these concepts: 
 
Method I: Euclidean Distance Based Algorithm 
 
In this method, a Euclidean distance measure can be used to detect a given binding sequence in the 
DNA sequence. This measure is calculated at each single base in the DNA sequence as follows:   



 

1. Map both DNA sequence and the binding sequence under study to their equivalent numerical 
quaternary representations using (A = 0, C = 1, G = 2, and T = 3). 

2. Slide the binding sequence along the DNA sequence and find the Euclidean distance at each 
alignment position. 

3. Sum the resulting Euclidean distance vector and save the result as a function of base position. 
4. Plot the resulting vector in step 3 and detect minimal points.  

 
A minimal point (dip) of amplitude of zero in the resulting plot corresponds to a total match of the binding 
sequence. The next minimal point is a partial match of the binding sequence. Hence, this method is able 
to detect the binding sequences in their exact location and accounts for gabs (mismatches as well). 
 
Method II: Cross Correlation (Matched Filter) 
 
In telecommunication, a matched filter is obtained by correlating a known signal, or template, with an 
unknown signal to detect the presence of the template in the unknown signal. This is equivalent to 
convolving the unknown signal with a time-reversed version of the template. The matched filter is the 
optimal linear filter for maximizing the signal to noise ratio (SNR) in the presence of additive stochastic 
noise. Method III can be done using a matched filter of an impulse response equal to y(-n) and an input of 
x(n) ( y(n) is the binding sequence and x(n) is the DNA sequence) as follows (see Figure 13): 
 
 
 

 
 
 

Figure 13: Matched Filter 
 

1. Map both the DNA sequence x(n),  and the binding sequence y(n),  under study to their 
equivalent binary representation using (A = 00, C = 01, G = 10, and T = 11). 

2. Convert each zero in the resulting binary sequences to (-1) for a better correlation form. 
3. Correlate both sequences using  

( ) ( ) ( )= ⊗z n x n y n ( ) ( )∗= ∗ −x n y n ( ) ( )
∞

=−∞

= +∑
n

x k y n k ,                             (5) 

where (⊗ ) corresponds to cross correlation and (∗ ) corresponds to convolution.  
 
Correlation is equivalent to convolution of the sequence, x(n),  with an inverted version of the 
sequence, y(n). This can be done by first flipping the sequence y(n) and then convolving it with 
the sequence x(n). 

4. Plot the cross correlation function and detect the maximal points. 
5. Convert the binding sequence detected position ( a maximal point in the plot) to their 

corresponding locations in the original DNA sequence using  

    
  Detected Position Detected position    length of the

 =   ‐  1 2
In the DNA sequence       in the Plot binding sequence

⎡ ⎤⎛ ⎞⎧ ⎫ ⎧ ⎫ ⎧ ⎫
+⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟

⎢ ⎥⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎝ ⎠⎢ ⎥
 

Where ⎡ ⎤⎢ ⎥X  rounds the value X to the nearest integer larger than X. 
 
 Method III: Exponential Detection Metric 

 
This method detects a TFBS based on aligning the binding sequence with the DNA sequence. An 
exponential metric related to the number of matches at each alignment is evaluated as follows: 
1. Slide the binding sequence under study along the DNA sequence one base at a time. 
2. At the ith alignment, compute an exponential weighting function ( ( )W i ) using the equations: 

y(-n) 
y(n): binding 

sequence 
x(n) 

DNA sequence 

n = N 
z(n) z(N) 



 

1

( ) ( )
=

=∑
N

n

W i w n , 

where ( )w n  is the weight applied to the base in the nth  position and N is the length of the binding 
sequence under study. The weights are given by: 

σ δ
δ
( ) 1

( )
0 ( ) 0

⎧ =
= ⎨

=⎩

a if n
w n

if n
, δ

1,
( )

0,
⎧

= ⎨
⎩

if match
n

if mismatch
 

where a  is an input parameter that controls the exponential growth of the weighting function, and 
σ  is the number of matches at each alignment. . 

3. Repeat step 2 for all alignments along the DNA sequence to get the weighting vector W : 
[ ](1), (2),..., ( 1)= − +W w w w L N , 

where L is the length of the DNA sequence under study.  
4. Plot the weighting vectorW , and detect peaks. 

Model IV: Free Energy Metric 
 
In this method we use the free energy table (see Table II) to calculate a free energy distance metric in 
kcal/mol.  This metric is calculated at each alignment between the mRNA sequence and the binding 
sequence under study as follows: 
1. Align the binding sequence with the mRNA sequence and shift it to the right one base at a time. 
2. At the ith alignment,  calculate the free energy metric using the equation: 

( ) ( ) ( )δ
−

+
=

Ε =∑
1

1
1

.
N

n n
n

i E y y n
                                                                                                                                        

(6) 
where N is the length of the binding sequence. y  denotes the binding sequence vector and is 
given by = 1 2[ , ,..., ]Ny y y y . Let x  denote the mRNA sequence vector where = 1 2[ , ,..., ]Lx x x x . 

 

+1( )n nE y y  is the energy dissipated on binding with the nucleotide doublets 1n ny y + and is calculated 
from Table II. δ ( )n  is given by: 

δ + +

+ +

=⎧⎪= ⎨ ≠⎪⎩

1 1

1 1

1 , ( )
( )

0 , ( )
n n n n

n n n n

if y y x x match
n

if y y x x mismatch
                                                                                                                

(7) 
 

3. Repeat step 2 for i=1,2,…,L-N+1, where L is the length of the mRNA sequence vector, 
4. Plot the free energy vector E and detect minimal points. 

 
The four previous models can be modified to utilize the energy table given in table 2 as well.  

 
3.5 Variable Length Modeling - Gene Identification Algorithm 
 
Based on the analogy between DNA and variable length codes (VLC), genes can be viewed as branches 
in a tree diagram (Figure 9) and hence can be identified (located) using the following procedural steps: 

1- Design a sequence search algorithm based on correlation, matched filters, or codebooks to 
identify a regulatory elements (REs) (e.g. promoters, ribosome binding sites, start codons, stop 
codon, transcription factor binding sites etc.) in a data stream (e.g. DNA) with a well-defined 
resolution.   

2- Decide which groups of REs (identified using algorithm developed in step 1) and data are 
organized in a fashion that suggest a functional gene. This includes proper placement of 
regulatory sequences such as promoters, enhancers, ribosome binding sites (Shine-Dalgarno 
sequence in prokaryotes), exon structure including splice site recognition (in Eukaryotes), or any 



 

other transcription factor (TF) binding sites that occur in proximity to start codons. This will require 
building a data base of all known promoters and TF binding sites. This process will be iterative in 
nature, and additional information obtained in the iterations will be used to improve posteriori 
decisions (turbo decoder principle). 

3- Assign all detected genetic sequences (coding + noncoding) to their corresponding branches in 
the tree diagram representation described in Figure 9. This will help eliminate some wrongly 
detected genes.     

4- Study correlations between coding and non-coding regions for every sequence, correlations 
among coding regions, and correlations among non-coding regions. This will help identify 
characteristics to the organism under study and detect new possible regulatory sequences. 

 
The prefix structure will have to be verified for all organisms that we will be dealing with. If this condition 
doesn’t hold true; still the searching algorithm will be based on detection methods used in 
communications (correlators, matched filters, codebooks, soft and/or hard decisions, etc. [23]). The 
specific method to be used in the different cases will be adapted depending on the general characteristics 
of the organisms under study. 
 
3.6 Mutation Analysis 
 
Our proposed work will extend mutation analysis results obtained in preliminary work to: 1) design similar 
models for the process of transcription in prokaryotes, 2) design similar models for gene expression in 
eukaryotes including translation, transcription, and splicing, and 3) apply the developed models to 
genomes of different organisms.  
 
3.7 Application and Extension to other Organisms 
 
The proposed models will be extended to other prokaryotic and eukaryotic genomes to understand the 
mechanisms of transcriptional regulation in different spatial and temporal contexts. Given the complex 
pattern of regulatory interactions, the motif discovery tools and comparative genomics approaches will 
also be integrated to detect regulatory elements in many genomes, including the accurate location of 
transcriptional start sites, DNase hypersensitive sequences within nuclear chromatin that represent 
regulatory regions (including promoters, enhancers, silencers, locus-control regions), and TF binding 
locations from the ChIP–chip experiments. 
 
5     Timetable 
 
During the first year, work will be directed to study prokaryotic genomes using E. coil as a test organism 
to validate the system. We will model the genome structure using models in sec 4.1 and 4.2. This will 
involve identification of (1) consensus sequences for promoters i.e. transcriptional start sites, (2) 
translational signals such as Shine-Dalgarno and S1 protein ribosome binding sites; as well as 
terminators, (3) ncRNA genes. The relative organization of these signals will then be used to detect 
specific putative genes, as well as the conditions under which these genes would be expressed. The 
detection of the genes and regulatory elements (REs) will be done using an iterative decoding algorithm 
analogous to turbo decoders.  In the following years, work will be expanded to eukaryotic organisms, 
namely humans. This will be a substantially more complex task than in prokaryotes. It will require building 
a data base of all known promoters and TF binding sites. Work will involve using the previous methods 
and developing algorithms based on pattern recognition, Discrete Fourier Transform (DFT), and wavelet 
analysis. Moreover, we will develop computational algorithms and databases for systematic identification 
of transcriptional regulators and regulons in new organisms; and integrate genome expression data with 
known and predicted regulons and metabolic pathways. Throughout our work we will integrate our 
research with various educational and extension activities paying special attention to the goals ix and x 
described in section 1.  


