ECE 515
Modern Digital Communications – Course Syllabus
Spring 2012
Instructor: Guillermo Atkin

Office: SH – 141, 312-567-6810
Office Hours: M and W: TBA
e-mail: atkin@iit.edu
Class Hours: M and W: 13:50 to 15:05 PM, TBA

Description: Review of modulation and coding. Trellis coded modulation. Digital signaling over fading multipath channels. Spread spectrum signals for digital communications. Multiple access systems, time-division multiple access, code-division multiple access, frequency-division multiple access. OFDM communications systems.

Prerequisites:
- ECE 513 and ECE 511 (or instructor consent)
- Understanding of continuous and discrete linear systems.
- Knowledge of probabilities and random variables.
- Understanding of digital modulation methods and optimum receiver.
- Understanding of block and convolutional codes. Encoding and decoding.
- Knowledge of evaluation of probabilities of error in and AWGN channel.

Textbook: Digital Communications, by John G. Proakis and Salehi, McGraw-Hill Book Company, 4th edition (There is a 5th edition with some updates, but unfortunately it uses a different approach that the one used in the textbook for ECE 513, so it makes it very difficult to follow. You can get it at your own risk, but will require significant work in matching equations, some of them missing).

References:
Course Outline:

Review of Modulation and Coding Theory
1. Review of the main components of a Digital Communication System
2. Review of Block Codes - Convolutional codes
3. Lattices

Trellis Coded Modulation (TCM)
1. Introduction and Fundamentals
2. Trellis Representation
3. Set Partitioning
4. Examples of TCM schemes
5. Decoding TCM
6. Performance Evaluation in AWGN channel
7. Upper Bound to Error Probability
8. Lower Bound to Error Probability
9. Examples
10. Computation of dfree

Digital Signaling over Fading Multipath Channels
1. Characterization of Fading Multipath Channels
2. The Effect of Signal Characteristics on the Choice of a Channel Model
3. Diversity Techniques for Fading Multipath Channels
4. Digital Signaling over a Frequency-Selective, Slowly Fading Channel
5. Binary and M-ary Signaling over a Frequency-Nonselective, Slowly Fading Channel
6. Coded Waveforms for Fading Channel
7. Probability of Error. Hard and Soft Decision
8. Performance of Convolutional Codes
9. Constant Weight and Concatenated Codes
10. Analysis and Performance of TCM for Fading Channels

Spread Spectrum Signals for Digital Communications
1. Model of a Spread Spectrum Communications System
2. Direct Sequence Spread spectrum Signals
3. Rake Receivers
4. Multi-user Detection
5. Frequency Hopped Spread Spectrum Signals
6. Other types of Spread Spectrum Signals
7. Spread Spectrum in multipath channels

Multiuser Communications
1. Multiple Access Techniques (CDMA, TDMA, FDMA, SDMA, PDMA)
2. Capacity of Multiple Access Systems.

Multichannel and Multicarrier System
1. Multichannel Digital Communications in AWGN
2. Multicarrier Communications
OFDM
 i. Introduction
 ii. Transmitter and Receiver Structure
 iii. Performance Analysis

Grading.

Coursework will be graded as follows:

1. Homework 5% (every week, due Mondays)
2. Projects 20%
3. Exams 1 25% (02/15/10) - tentative
4. Exams 2 25% (03/28/10) - tentative
5. Final exam 25% (TBA)

Homework solutions will be posted in the Blackboard on Wednesdays. HWs should be submitted using the Digital Dropbox (Blackboard) for all sections by the due date posted in the HW. No late HW will be accepted without previous instructor consent.

Grade Policy: A (≥ 90%); B(80 - 89%); C(66 - 79%); D(50 - 65%)

Reasonable accommodations will be made for students with documented disabilities. In order to receive accommodations, students must obtain a letter of accommodation from the Center for Disability Resources and make an appointment to speak with me as soon as possible. The Center for Disability Resources is located in the Life Sciences Building, room 218, 312-567-5744 or disabilities@iit.edu.