ECE 421 (423) - Microwave Circuits and Systems (with Laboratory)

Credits: 3, **Contact Hours:** Two 75 minute lecture sessions per week, ECE 421 **Credits:** 4, **Contact Hours:** Two 75 minute lecture sessions per week, one 160 minute laboratory session per week

Coordinator:	T. Wong, Professor of ECE		
Textbook:	S. Ramo, J. Whinnery, and T. Van Duzer, <i>Fields and Waves in Communication Electronics</i> , 3rd Edition, Wiley, 1993. ECE 423 Laboratory Manual		
2019 Catalog Data:	ECE 421: Microwave Circuits and Systems, Credit 3		
	Maxwell's equations, waves in free space, metallic and dielectric waveguides, microstrips, microwave cavity resonators and components, ultra-high frequency generation and amplification. Analysis and design of microwave circuits and systems. Credit will be given for either ECE 421 or ECE 423, but not for both. Lecture: 2		
	ECE 423 : Microwave Circuits and Systems with Laboratory, Credit 4		
	Maxwell's equations, waves in free space, metallic and dielectric waveguides, microstrips, microwave cavity resonators and components, ultra-high frequency generation and amplification. Analysis and design of microwave circuits and systems. Credit will be given for either ECE 421 or ECE 423, but not for both. Lecture:2 Lab:1		
Enrollment:	Elective course for EE majors		

Prerequisites or co-requisites by topic: ECE 307 Engineering Electromagnetics

Specific outcomes of instruction:

Course contents and laboratory work will provide students with the experience of

- 1. Utilize Maxwell's equations and the appropriate boundary conditions to solve practical problems.
- 2. Determine plane wave propagation in homogeneous media and reflection and refraction of plane waves.
- 3. Determine TEM wave propagation in uniform transmission lines; compute characteristic impedance and wave velocities.
- 4. Calculate wave impedance, propagation constant, and estimate power dissipation in cylindrical metallic waveguides.
- 5. Determine quasi-TEM wave propagation in planar transmission lines and use empirical formulas to characterize these lines.
- 6. Determine equivalent voltage and current for guided waves; apply the scattering matrix for representation and analysis of microwave components.
- 7. Describe the construction of passive microwave components and their properties in terms of scattering matrices.
- 8. Acquainted with principles of active microwave devices.
- 9. Understanding the operation of microwave systems and measurement equipment at microwave frequencies.

Additional experience for ECE 423:

- 10. Be familiar with microwave sources, wavelength and power measurement.
- 11. Analyze wave transmission and reflection in transmission lines and waveguides.
- 12. Make measurements of properties of passive microwave components.
- 13. Use of network analyzer to measure S-parameters.
- 14. Design and test a microstrip circuit with the use of a CAD tool
- 15. Complete an engineering design incorporating engineering standards and realistic constraints.
- 16. Prepare an informative and organized design project report.

Relationship of ECE 421 specific outcomes of instruction to student outcomes:

		ECE 421	ECE 423
		Course	Course
	Student Outcomes	Goals	Goals
	An ability to identify, formulate, and solve complex engineering problems by	1,2,3,4,5,6,7,8,	1,2,3,4,5,6,7,8,
1	applying principles of engineering, science, and mathematics	9	9
	An ability to apply engineering design to produce solutions that meet specified		
	needs with consideration of public health, safety, and welfare, as well as global,		5,6,7,12,13,14,
2	cultural, social, environmental, and economic factors	5,6,7	15
3	An ability to communicate effectively with a range of audiences		8
	An ability to recognize ethical and professional responsibilities in engineering		
	situations and make informed judgments, which must consider the impact of		
4	engineering solutions in global, economic, environmental, and societal contexts		
	An ability to function effectively on a team whose members together provide		
	leadership, create a collaborative and inclusive environment, establish goals,		
5	plan tasks, and meet objectives		
	An ability to develop and conduct appropriate experimentation, analyze and		11,12,13,14,15
6	interpret data, and use engineering judgment to draw conclusions		16
	An ability to acquire and apply new knowledge as needed, using appropriate		
7	learning strategies		

Topics:

- Electromagnetics (2 weeks)
- Transmission lines (1 week)
- Plane waves (2 weeks)
- Guided waves (3 weeks)
- Circuit theory for waveguiding systems (3 weeks)
- Microwave components (2 weeks)
- Active microwave circuits (2 weeks)

Laboratory topics (ECE 423):

- Students conduct microwave experiments on signal generation, power and frequency measurements.
- Transmission and reflection of waves, propagation characteristics of guided waves, and microwave components.
- The use of an automated network analyzer is introduced through scattering parameter measurement of passive elements.
- In the last six weeks of the semester, a design project on a simple microstrip circuit is implemented by each student.
- The circuit is first optimized with a commercial CAD package, followed by fabrication and testing with the network analyzer. A report on the design process and measured performance of the circuit is required.

Prepared by: T. Wong Date: February 28, 2020