ECE 418 (419) - Power Systems Analysis (with Laboratory)

Credits: 3 (4), Contact Hours: Two 75-minute lecture session per week, (one 160-minute laboratory session per week).	
Coordinator: Textbook:	Hassan Shanechi, Senior Lecturer of ECE J. Glover, M. Sarma, and Overbye Power System Analysis and Design, Sixth Edition, Cengage Learning, 2017
2019 Catalog Data:	ECE 419: Power Systems Analysis with Laboratory. Credit 4. Transmission systems analysis and design, network analysis using Newton-Raphson load flow. Unsymmetrical short-circuit studies. Detailed consideration of the swing equation and the equal-area criterion for power system stability studies. Use of commercial power system analysis tool to enhance understanding in the laboratory. Prerequisite(s): [(ECE 319)] (3-3-4) (C)(P)
Enrollment:	Elective course for CPE and EE majors.

Specific outcomes of instruction:

After completing this course, the student should be able to do the following:

- 1. Construct the power transformer equivalent models, calculate the transformer performance indices and use the short circuit test and open circuit test data to derive the transformer models.
- 2. Derive and calculate the resistance, inductance, and capacitance for single-phase and three-phase transmission lines.
- 3. Derive the models for short, medium, and long transmission lines and calculate the line performance indices.
- 4. Apply Gauss-Seidel method or Newton-Raphson method to obtain a power flow solution of small power systems (2 or 3 bus system).
- 5. Utilize the generator steady state and transient models in fault analysis and stability analysis.
- 6. Describe the three-phase symmetrical fault and use Thevenin's equivalent and Z bus matrix to calculate the three-phase faults applied to small power systems (2 or 3 bus system).
- 7. Apply the concept of the symmetrical components (currents, voltages, impedances) in the calculation of the unsymmetrical faults (line-to-ground, line-to-line, and line-to-line-to-ground-faults).
- 8. Derive the swing and power equations for a single machine connected to infinite bus system and use them in the transient stability calculation. Use the Equal-Area Criterion in calculating the critical clearing time to clear a fault and to determine if the machine will remain stable following a disturbance such as three-phase fault or an increase in the machine mechanical power input.
- 9. Use *Matlab* in solving questions related to the above eight objectives.
- 10. Use commercial grade software (PSS/E) to analyze and design real power systems.

Relationship of ECE 419 specific outcomes of instruction to student outcomes:

		Course
	Student Outcomes	Goals
	An ability to identify, formulate, and solve complex engineering problems by applying principles	1,2,3,4,5,6,7,
1	of engineering, science, and mathematics	8
	An ability to apply engineering design to produce solutions that meet specified needs with	
	consideration of public health, safety, and welfare, as well as global, cultural, social,	
2	environmental, and economic factors	3,4,5,6,7,8
3	An ability to communicate effectively with a range of audiences	9,10
	An ability to recognize ethical and professional responsibilities in engineering situations and	
	make informed judgments, which must consider the impact of engineering solutions in global,	
4	economic, environmental, and societal contexts	
	An ability to function effectively on a team whose members together provide leadership, create a	
5	collaborative and inclusive environment, establish goals, plan tasks, and meet objectives	10
	An ability to develop and conduct appropriate experimentation, analyze and interpret data, and	
6	use engineering judgment to draw conclusions	10
7	An ability to acquire and apply new knowledge as needed, using appropriate learning strategies	

Topics:

- Introduction and review of power networks (1 week)
- Power system components modeling, transformers, transmission lines, per unit systems (1 week)
- Transmission line models and performance. (1.5 weeks)
- Power flow analysis (3weeks)
- Fault analysis (3 weeks)
- Steady state stability analysis (2 weeks)
- Transient stability analysis (2 weeks)
- Tests and review (1.5 weeks)

Computer usage: Students write programs in MATLAB and use the software included in the textbook and PSS/E.

Laboratory topics:

- Introduction to PSS/E (1 week)
- Transmission line parameter calculation (1 week)
- Transmission line design (1 week)
- Power flow analysis (2 week)
- Control of power flow (1 week)
- Symmetrical short circuit analysis (1 week)
- Unsymmetrical short circuit analysis (1 week)
- Application of short circuit analysis in design (1 weeks)
- Stability analysis (1 week)
- Major design experiment (4 weeks)
- Tests (1 week)

Prepared by: Hassan Shanechi Date: March 1, 2020