ECE 319 Fundamental of Power Engineering

Credits: 4, Contact Hours: Two 75 minute lecture sessions per week, one 160 minute laboratory session per week.

M. Krishnamurthy, Associate Professor of ECE **Coordinator: Textbook:** S. J. Chapman, Electric Machinery and Power System Fundamentals, McGraw-Hill, 2002. 2019 Catalog Data: ECE 319: **Fundamentals** of Power Engineering. Credit 4 Principles of electromechanical energy conversion. Fundamentals of the operation of transformers, synchronous machines, induction machines, and fractional horsepower machines. Introduction to power network models and per-unit calculations. Symmetrical three-phase faults. Gauss-Siedel load flow. Lossless economic dispatch. Laboratory considers operation, analysis, and performance of motors and generators. The laboratory experiments also involve use of PC-based interactive graphical software for load flow, economic dispatch, and fault analysis. Lecture: 3 Lab: 3 Credits: 4 Satisfies: Communications (C)

Prerequisites or co-requisites by topic: Entering freshman status

Enrollment: Required course for EE majors

Specific outcomes of instruction:

After completing this course, the student should be able to do the following:

- 1. Analyze balanced three phase circuits in the steady state
- 2. Use the per unit system in power circuit analysis
- 3. Explain the basic electromagnetic and electromechanical principles underlying the operation of transformers and rotating electric machines.
- 4. Develop the equivalent circuits for transformers (single phase and three phase) and AC machines (synchronous and induction). Use these equivalent circuits to analyze transformer and machine performance.
- 5. Perform tests to determine the equivalent circuit parameters for transformers and rotating machines.
- 6. Explain the electrical characteristics of transmission lines, develop equivalent circuit models of transmission lines, and use the models for analyzing line performance.
- 7. Represent power systems by one-line diagrams and by per-phase equivalent circuit models for steady state power flow analysis. Solve the resulting power flow equations iteratively with a computer.
- 8. Calculate balanced three phase faults on power systems.
- 9. Prepare an informative and organized lab report that describes the methodologies employed, the results obtained, and the conclusions made in a laboratory experiment.

Relationship of ECE 319 specific outcomes of instruction to student outcomes:

		Course
	Student Outcomes	Goals
	An ability to identify, formulate, and solve complex engineering problems by applying	1,2,3,4,5,6,7,8,
1	principles of engineering, science, and mathematics	9
	An ability to apply engineering design to produce solutions that meet specified needs with	
	consideration of public health, safety, and welfare, as well as global, cultural, social,	4,5,6
2	environmental, and economic factors	
3	An ability to communicate effectively with a range of audiences	9
	An ability to recognize ethical and professional responsibilities in engineering situations and	
	make informed judgments, which must consider the impact of engineering solutions in global,	
4	economic, environmental, and societal contexts	
	An ability to function effectively on a team whose members together provide leadership, create	
5	a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives	9
	An ability to develop and conduct appropriate experimentation, analyze and interpret data, and	
6	use engineering judgment to draw conclusions	9
7	An ability to acquire and apply new knowledge as needed, using appropriate learning strategies	

Topics:

- Introduction, Electromagnetic and Circuit Fundamentals (1 week)
- Three Phase Circuits (1 week)
- Transformers (1.5 weeks)
- AC Machinery Fundamentals (1 week)
- Synchronous Generators (1 week)
- Synchronous Motors (1 week)
- Induction Motors (1 weeks)
- Transmission Lines (1.5 weeks)
- Power System Representation & Equations (1 week)
- Introduction to Power Flow Studies (1 week)
- Symmetrical Faults (1 week)
- Tests and Final Exam (1 week)

Laboratory topics:

- Photovoltaic Arrays and Fuel Cells (1 week)
- Introduction to MATLAB and Circuit Analysis (1 week)
- Workbench Orientation (1 week)
- Introduction to PowerWorld and Power Factor Correction (1 week)
- Transformers (1 week)
- Synchronous Generators (1 week)
- Synchronous Motors (1 week)
- Induction Motors (1 week)
- Three-phase Transmission Lines (1 week)
- Power Flow and Symmetrical Fault Studies on a 5-Bus System (1 week)
- Multi-area System Operation Studies Optimal Power Flow (1 week)

Prepared by: I. Brown

Date: February 26, 2020