

Future Networking (FUN) Research Laboratory



# Design of Next Generation Internet Based on Application-Oriented Networking

Yu Cheng

Department of Electrical and Computer Engineering Illinois Institute of Technology Chicago, Illinois, USA <u>cheng@iit.edu</u> http://www.ece.iit.edu/~yucheng/







FunLab

# Agenda

- Background and motivations
- Application-oriented networking (AON)
- AON based multicast
- AON for next generation Internet management
- Conclusion



FunLab

# **Towards Next Generation Internet**

• Evolvement of the Internet

Future Networking (FUN)

**Research Laboratory** 

EM .

- Common communication infrastructure supporting various multimedia applications
- Emergence of new distributed computing models
- Extension of connection to mobile users
- Efforts towards next generation Internet
  - Internet QoS and traffic engineering
  - Content-aware or application-aware processing
  - New management plane based on service-oriented architecture (SOA)
  - Wireline/wireless seamless interworking



FunLab

# **Embedded Application Intelligence**

- Fundamental network functionalities through applicationlayer protocols
  - Domain name service (DNS) and Dynamic host configuration protocol (DHCP)
- Emergency of application-specific nodes
  - Web caches, multimedia gateways, wireless access gates, and firewalls
- Active networks: a generic architecture to provision programmability within the network
  - Packets replaced with capsules, carrying program segments
  - Never been widely deployed

Future Networking (FUN)

**Research Laboratory** 

EM .

- Large bandwidth overhead
- Lack of common capsule program language
- Security issue due to users' active control capability
- Application-oriented networking





### **Service-Oriented Architecture**

- Various resources are encapsulated with standard common interfaces
- Each service component publishes its location and service description
- Applications are created according to "find, bind and execute" paradigm
- SOA is mainly implemented with Web services interface and XML message communications



Page 4

FunLab



FunLab

# **Cisco Application-Oriented Networking**

- XML coding is verbose; pure software based XML parsing leads to unfavorable overhead
- Cisco propose to integrate the capability of intercepting and processing XML message into routers
  - Enable disparate applications to communicate
  - Enforce consistent security policies
  - Provide visibility of information flow
  - Enhance application optimization

Future Networking (FUN)

**Research Laboratory** 

RUN -

• Current Cisco AON applications are limited to message processing at the edge





FunLab

# Agenda

- Background and motivations
- Application-oriented networking (AON)
- AON based multicast
- AON for next generation Internet management
- Conclusion





FunLab

# **Application-Oriented Networking**

- A generic interpretation of AON: the IP devices can intercept not only IP packet headers but also the payloads
- AON is justified by the modern software and hardware technologies
- The AON routers, with embedded application intelligence, enable a chance to reexamine the design of Internet





Future Networking (FUN) Research Laboratory



# It is currently obscure on how to exploit the AON capacity to facilitate or enhance Internet in a systematic manner







FunLab

# **AON Router**

- The traffic input to an AON router is classified as normal traffic and AON traffic
  - One bit in the packet header is set as normal/AON indicator bit
  - Fine-grained classification information is carried in the payload







FunLab

# Agenda

- Background and motivations
- Application-oriented networking (AON)
- AON based multicast
- AON for next generation Internet management
- Conclusion





### **Multicast Issue**

- IP multicast, scalability issue
  - Construct and maintain a tree structure for each group
  - Multicast forwarding entries grow linearly
- Overlay multicast, efficiency issue
  - Tree or other delivery structures are constructed and maintained in the overlay network over the unicast infrastructure
  - Different overlay links pass through common physical links in the underlying transport network



Page 11

FunLab



Future Networking (FUN) Research Laboratory



# **AON-Based Multicast (AOM)**

- Multicast requires network
  embedded intelligence
- Service model
  - Source based model
  - Multicast receiver addresses are encoded in the packet
  - AON router computes necessary copies for appropriate output interfaces according to those addresses
- Protocol components
  - Membership management
  - Forwarding protocol



Page 12 FunLab





# Membership Management

- Receiver-side designated router (RDR)
  - Discover the active groups using IGMP
  - Maintain a group host list (GHL), storing the membership information
  - Send membership updating messages (MUMs) to the source node, in the format

#### (IP address of RDR: group 1, ..., group n)

- Source node
  - Aggregate RDR-group messages received and maintain a multicast group list (MGL)
  - MGL establishes a record for each group provisioned by the source as (group ID: RDR 1, RDR 2, ..., RDR n)



Page 13

FunLab





# **Forwarding Protocol**

- The normal/AON flag bit and the AON module classifier in the payload direct multicast packets to AON module
- MGL record will be extracted
- Necessary copies and corresponding output interfaces will be determined against unicast routing table and MGL record
- The MGL record forwarded to downstream is updated: *removing RDRs taken care of by other sub-trees*







FunLab

# **Bloom Filter Implementation**

- The MUM message and the MGL are compressed with bloom filter
  - MUM: (IP address of RDR: group 1, ..., group n)
  - MGL: (group ID: RDR 1, RDR 2, ..., RDR n)
- Bloom Filter Design
  - Reverse path routing for multicast
  - Longest prefix match issue
  - Small false positive probability
  - Asymmetric routing



FunLab

# **Properties of AOM**

- Forwarding complexity is totally independent of the number of groups to be supported
- No new multicast routing protocol needs to be introduced. Existing intra-domain and inter-domain IP routing protocols are leveraged
- The membership management component, the multicast forwarding component, and group ID are completely decoupled
- The cost incurred in the AON-based multicast is the bandwidth overhead, due to the AON classifier and the MGL/GHL record carried with each packet.

Future Networking (FUN)

**Research Laboratory** 

am-



### **Performance Evaluation**

Simulation topology



Page 18

**FunLab** 





### **Performance evaluation**

• Bandwidth Cost Percentage (BCP)

 $BCP = \frac{T}{C \cdot D} \times 100\%$ 

T - the total number of bits traversing the physical network

C - the total network capacity (i.e., the summation of all link capacities), and D - the simulation duration.

- AOM is very close to IP multicast in terms of bandwidth efficiency



Page 19

FunLab





FunLab

### **Performance evaluation**

• Forwarding FALSE Positive Rate Binary tree topology with different tree heights

| Н |     | AOM                      |     | FRM                      |
|---|-----|--------------------------|-----|--------------------------|
| 2 | 4   | $2.6934 \times 10^{-53}$ | 6   | $5.4875 \times 10^{-50}$ |
| 3 | 8   | $1.4433 \times 10^{-15}$ | 14  | $2.5713 \times 10^{-11}$ |
| 4 | 16  | $2.3242 \times 10^{-10}$ | 30  | $2.8203 \times 10^{-6}$  |
| 5 | 32  | $6.6281 \times 10^{-6}$  | 62  | 0.0085                   |
| 6 | 64  | 0.0111                   | 126 | 0.4172                   |
| 7 | 128 | 0.4358                   | 254 | 0.9658                   |

S. Ratnasamy, A. Ermolinskiy and S. Shenker, "Revisiting IP Multicast," in *Proc. ACM SIGCOMM*, Sept. 2006.



Future Networking (FUN) Research Laboratory



Page 21

**FunLab** 

### **Performance evaluation**

Packet Overhead







FunLab

# Agenda

- Background and motivations
- Application-oriented networking (AON)
- AON based multicast
- AON for next generation Internet management
- Conclusion



FunLab

# **Next Generation Network Management**

- Internet developing into an extremely complex system
- Efforts to reduce the development complexity, lower the management cost, and shorten the time-to-market of new Internet applications
  - Service-oriented architecture (SOA)
  - Application-oriented networking (AON)
  - Autonomic computing

**Future Networking (FUN)** 

**Research Laboratory** 

FUN-

- Technologies are not developed in a coordinated manner
- Autonomic service management framework (ASMF)
  - Every thing is a service: any capability that may be shared and exploited in a networked environment, including physical and virtualized services
  - Incorporate SOA, AON, and autonomic computing for optimal scalability, resource utilization, and QoS performance





FunLab

# SOA to be Enhanced

- Implementing the service broker
  - The universal description, discovery, and integration UDDI approach
  - Broker overlay network
    - How to organize the overlay
    - How to search a set of correlated services
    - How to negotiate SLAs in a distributed approach
- Dependable and automatic service composition
  - The business process execution language (BPEL)
  - Service composition and invocation to be handled by the broker overlay
- Web services and XML messages based SOA implementation
  - Verbose XML coding
  - Triggering AON





FunLab

# **AON for Service Management**

- Integrating XML message backbone to network devices
  - XML parsing expedited by hardware processing
  - Message routing at network layer facilitated by easy access to resource availability and QoS information
  - More thorough investigation of how to exploit AON capability to facilitate SOA based service creation and management in the architecture level





FunLab

# **Autonomic computing**

- Automated management with properties of self-configuration, selfoptimization, self-healing, and self-protection
- A collection of autonomic elements
- "Monitor, analyze, plan, execute" control loop
- Integration consideration
  - component-based reference models
  - Autonomic element encapsulated with Web services interface
  - "find, bind and execute" SOA principle to orchestrate the autonomic service component
  - Issues of distributed service composition and integration with AON





RUN

#### **Autonomic Service Management Framework**

- Web services network (resource virtualization layer)
  - Manageable Web services with an autonomic manager for internal management
  - Manageability interfaces (distributed service location/composition and SLA based resource allocation considered as important manageability capabilities)
    - Semantic description
    - SLA negotiation
    - Autonomic management (sensor and effector)
- Autonomic application enabling fabric
  - Overlay of autonomic service brokers
  - Distributed service location and composition
- AON transport network



Application Oriented Network (IP transport network + message-level intelligence)

Page 27

FunLab



Future Networking (FUN) Research Laboratory



# **ASB** Overlay

- Distributed data base storing published service descriptions
- Automatic service location and composition
  - Semantic request analyzer
  - SLA translator
  - Composition message generator
- Delegated service management

#### Autonomic Service Broker



Page 28

FunLab





Paɑe 29

FunLab

# **Distributed Service Composition**

 Semantic graph based service component location

FUN

- P2P ASB overlay
- Tree ASB overlay
- SLA negotiation incorporated with service composition







FunLab

# **Exploiting AON**

- Locality-aware P2P overlay
  - AON router know both application and network layer information
  - Select best path for a logic link
- Network layer solution to ensure an applicationlayer link
  - Service differentiation
  - Traffic engineering
- Overlay topology optimization
  - P2P implying end hosts at edge
  - A tree structure for ASB overlay (each ASB attached to an AON router)



Future Networking (FUN) Research Laboratory



Page 31

FunLab

# Summary

- AON provide an opportunity to streamline Internet design
- How to exploit AON capacity in a systematic way is not clear
- This talk presents some initiating work and thinking towards next generation network design
- For future work
  - IPTV over the application-oriented multicasting
  - Develop implementations for ASMF
  - Apply ASMF to manage a prototype DiffServ/MPLS network





FunLab

# References

- X. Tian, Y. Cheng, K. Ren and B. Liu "Multicast with an application-oriented networking (AON) approach," *Proc. IEEE ICC 2008, Beijing,* pp. 5646-5651
- Y. Cheng, A. Leon-Garcia, and I. Foster, "Towards an autonomic service management framework: A holistic vision of SOA, AON, and autonomic computing," *IEEE Communications Magazine*, vol. 46, no. 5, pp. 138-146, May 2008