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Abstract—We investigate the state estimation problem in cyber-
physical systems (CPS) where the dynamical physical process
is measured by a wireless sensor and the measurements are
transmitted to a remote state estimator. It has been shown that
the estimation performance strongly depends on the wireless
communication quality. To enhance the estimation performance,
we apply the cognitive radio technique to the system and propose
a CHAnnel seNsing and switChing mEchanism (CHANCE) to
explore opportunistic accessibility of multiple channels. We con-
sider two types of wireless channels, i.e., one unlicensed channel
which can be accessed freely and several licensed channels which
have been pre-assigned to primary users. For the single-licensed-
channel case, we develop a necessary condition for the estimation
stability based on the physical process dynamics, channel quality
and the channel sensing accuracy. This condition becomes also
sufficient under certain conditions. We also derive the conditions
under which the estimation performance is guaranteed to be
improved by CHANCE. The above results are then extended to
multi-licensed-channel cases. Simulations based on a particular
linear system show that, the long-run mean estimation error
covariance with CHANCE is at least 63% less than that without
CHANCE. It is also shown that CHANCE outperforms the exist-
ing RANDOM mechanism in terms of estimation performance.

Index Terms—Cognitive radio; cyber physical system; state
estimation; stability condition; performance bounds

I. INTRODUCTION

The emerging cognitive radio (CR) technology which allows
dynamic spectrum reuses can significantly improve spectrum
utilization efficiency and mitigate the situation of spectrum
scarcity [1], [2]. With CR, unlicensed users can opportunis-
tically use holes of the licensed spectrum, by which the
communication quality of the unlicensed users is expected to
be improved. A considerable amount of literature has been
published that studies various aspects of the CR networks such
as spectrum sensing algorithms, network protocols, resource
allocation, and network security [3]–[5].

In this paper, we study the CR technology from a cyber
physical system (CPS) perspective. CPS systematically inte-
grate physical processes with sensors, actuators and efficient
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computation and communication modules to provide real-
time monitoring, control and other services. CPS facilitate
intimate interactions between human beings and the physical
world in a wide range of applications such as environment
surveillance, vehicular networks, industrial automation and
smart grid [6]–[10]. The close interplay between the cyber
and physical spaces often requires real-time operation, efficient
system resource utilization and security guarantee [7], [8].

In many CPS applications, sensor data often need to be
transmitted through the wireless media to remote units for
state estimation which plays a vital role in provisioning real-
time monitoring and control. For example, in a smart grid,
field sensors report real-time voltage and phase observations
to remote power generators which estimate the real voltage and
take certain actions in order to stabilize it within some desired
range [6]. Due to a variety of factors such as bandwidth limita-
tion, interferences from other wireless devices or environment,
and channel fading, wireless communications usually undergo
packet losses and delay which impose strict requirements on
the communication protocols as well as estimation and control
policies [11], [12]. Since the estimation mechanism relies on
the information received from sensors, packet losses strongly
affect the estimation performance. When a loss occurs, the
estimator will have to “guess” current state of the physical
process based on all historically received data, which will
introduce error to the estimation performance. Illustrations of
such effect are shown in Fig. 1 where we consider a simple
i.i.d. packet loss model. The first figure shows that a packet
loss will cause the estimation deviate from the one without
loss, and the deviation is enlarged when packets are lost
successively; the other figure demonstrates that the estimation
performance degrades as the loss rate increases.

The problem of state estimation stability under lossy wire-
less communications has attracted intensive research attentions
[13]–[16]. Considering the i.i.d packet loss model, Sinopoli
et al. prove the existence of a critical value for the packet
loss rate below which the estimation error covariance would
converge in the mean square sense [13]. The estimation stabil-
ity under a more complicated channel model with Markovian
packet losses has been studied in [14]. A class of more
general packet loss models based on semi-Markov chains is
investigated in [15]. In order to preserve the estimation per-
formance, sensor scheduling and transmission power control
methods have been proposed to improve the communication
quality [17], [18]. Basically, due to bandwidth limitation, a
single channel may be insufficient for estimating fast changing
physical processes. For state estimation with multiple sensors,
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Chiuso et al. prove that the optimal estimation performance
under packet loss cannot be reached using a single bandwidth-
limited channel [19]. Liu et al. study the estimation stability
over multiple wireless channels by dividing the measurement
data and then transmit them through the channels separately
[20]. However, they focus on fixed communication structures
without considering channel dynamics.
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Fig. 1. Impact of communication quality on estimation performance, where
the physical process is the same as that in Section V.

We apply CR over multiple channels to enhance the state
estimation performance in CPS. While it is well noticed
that CR can effectively improve spectrum efficiency in the
communication regime, its ability has not been fully exploited
in the CPS domain. In the literature, only a few works have
investigated the estimation and control problems with CR. In
[21], Ma et al. propose an optimal estimation and control
algorithm and analyze the system stability conditions focusing
on a single licensed channel. The results have been extended
to multi-channel cases [22]. However, in their work, only one
licensed channel is sensed and opportunistically used for each
transmission, which is different from ours where both licensed
and unlicensed channels can be used. In addition, they do not
consider channel sensing inaccuracy which is a fundamental
problem for practical cognitive radio systems [23].

We propose a CR based CHAnnel seNsing and switChing
mEchanism (CHANCE) for state estimation for a class of
generic CPS with linear state dynamics. We aim to answer
whether and how the state estimation can be improved by
the new mechanism. Different from classical CR theories
which focus on network throughput, we emphasize on the
communication reliability and state estimation performance.
Our main contributions can be summarized as follows: (1)
We propose a new state estimation framework by taking the
advantage of the CR technology, and identify a novel packet
loss model. (2) For the case that only one licensed channel is
available, we derive a necessary condition for the estimation
stability which takes factors from both physical and cyber
spaces into account. This condition is also sufficient when the
observation matrix has full column rank. Moreover, this con-
dition is a generalization of existing results for either i.i.d. or
Markov packet loss models. (3) We obtain the conditions under
which the proposed mechanism can certainly improves the
estimation performance. Moreover, a pair of upper and lower
bounds for the mean square estimation error is determined.
The performance improvement in terms of performance ratio is
analyzed and the worst case ratio is derived. (4) We generalize
the above results to accommodate multiple licensed channels.
Corresponding stability conditions and performance bounds
are also derived. Numeric results are provided to demonstrate

the effectiveness of our proposed mechanism.
The remainder of this paper is organized as follows. The

whole system is modeled in Section II. For the single-licensed-
channel case, the state estimation stability conditions and
performance are studied in Section III. Extensions to multi-
licensed-channel cases are provided in Section IV. Section V
presents simulations results. Finally, Section VI concludes the
paper. To be concise, we present all main results in form of
theorems to which the proofs can be found in the Appendices.

II. SYSTEM MODELING

We consider a class of generic CPS where the physical
process has linear state dynamics. As shown in Fig. 2, a
wireless sensor periodically samples the physical process and
transmits its measurement to a remote estimator for state
estimation. There is an unlicensed channel, CH0, which is
likely to be used by a large amount of wireless devices and
thus packet collision may happen frequently. Alternatively,
the sensor can opportunistically use the spectrum holes of
several licensed channels (sub-bands divided from a wide-band
channel), {CHi|i = 1, . . . ,m}, each of which is restricted to
only a primary user (PU) that may not always occupy it. The
basic idea of CHANCE is to apply CR to use spectrum holes
of licensed channels for measurement transmission. Here, we
assume all the channels are mutually independent [24], [25].
We adopt the “listen before talk” strategy such that the sensor
performs channel sensing right before each data reporting time.
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Fig. 2. Overview of CHANCE.

In the following, we present system models, where the
main notations are listed in Table I. We adopt the following
convention: Rn is the n-dimensional Euclidean space. E[·]
and P{·} denote the expectation and probability of a random
variable, respectively. We use boldface letters in lower case
to denote vectors, and capital letters to denote matrices. For
any matrix/vector M , M ′ and MH denote the transpose and
Hermitian transpose of M , respectively. [·]i denotes the i-th
entry of a vector, while [·]ij denotes the (i, j)-th entry of a
matrix. Tr(·) and ρ(·) denote the trace and spectral radius of
a square matrix, respectively. Denote Sn+ as the set of positive
semi-definite matrices of dimension n×n. ∀X ∈ Sn+, λmin(X)
and λmax(X) are its minimum and maximum eigenvalues,
respectively. ∀X,Y ∈ Sn+, X ≥ Y if X − Y ∈ Sn+.

A. The Physical Process and State Estimation Algorithm

We consider that the physical process runs with the follow-
ing discrete-time state dynamics:

xk+1 = Axk +Bak +wk, (1)

where xk ∈ Rn is the system state, ak ∈ Rn′
is the control

action, wk ∈ Rn is the system noise. As a typical and generic
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Table I
NOTATIONS

Notation Description
xk,yk System state and measurement of the physical process

CH0, CHi The original channel and the i-th licensed channel,
respectively. i ∈ {1, . . . ,m}

ℓ0, ℓi Packet loss rate on CH0 and the loss rate on CHi when
CHi is idle

T , τ Sensor’s sampling period and channel sensing time
si,k , oi,k The channel state and channel sensing result of CHi.
αi, βi CHi’s state transition probabilities. See (5)

pd,i, pf,i Correct detection and false detection probabilities, re-
spectively, for sensing CHi

process model, Eq. (1) is widely adopted for describing the
state dynamics of power systems, smart grid infrastructures,
building automation systems, etc. [8], [22], [26]. The sensor’s
measurement yk ∈ Rn′′

is modeled by

yk = Cxk + vk, (2)

where vk ∈ Rn′′
is the measurement noise. In the above, A,B

and C are constant matrices with compatible dimensions. For
simplicity, we assume that: wk ∈ Rn, vk ∈ Rn′′

, and the
initial state x0 are mutually independent white Gaussian noises
with means 0, 0, x̄0 and covariance matrices Q > 0, R >
0, P0|0 > 0, respectively; the pair (A,

√
Q) is controllable and

the pair (A,C) is observable.
Kalman Filter based State Estimation: In each step,

we define a random variable γk ∈ {0, 1} to model the
wireless communication reliability. Specifically, γk = 1 if the
measurement packet is successfully received by the estimator
during step k, and γk = 0 if the packet is lost. Define x̂k|k−1

and x̂k|k as the prediction and estimate of the system state at
step k, respectively. Denote the predicted and estimated error
covariance by Pk|k−1 , E[(xk − x̂k|k−1)(xk − x̂k|k−1)

′] and
Pk|k , E[(xk − x̂k|k)(xk − x̂k|k)

′], respectively. The Kalman
filter under packet losses runs recursively as follows [13].

x̂k|k−1 , Ax̂k−1|k−1 +Bak
Pk|k−1 = APk−1|k−1A

′ +Q
x̂k|k = x̂k|k−1 + γkKk(yk − Cx̂k|k−1)

Kk , Pk|k−1C
′(CPk|k−1C

′ +R)−1

Pk|k = (I − γkKk)Pk|k−1

(3)

Based on (3), the predicted error covariance satisfies the
following modified algebraic Riccati equation.

Pk = APk−1A
′−γkAPk−1C

′(CPk−1C
′+R)−1CPk−1A

′+Q.
(4)

where we define Pk , Pk|k−1 for convenience. We assume
that1 P0 ∈ SQ , {S|S ∈ Sn+, S ≥ Q}. We call the
estimation process is mean square error (MSE) stable if
supk≥0 E[Tr(Pk)] < ∞, where the expectation is taken over
the packet loss process {γk}k≥0.

If the communications are perfect, i.e., γk ≡ 1, Pk con-
verges to a unique value [13]. The convergence may not hold
in the presence of packet losses. In the literature, the sequence
{γk}k≥0 is usually assumed comply with either an i.i.d. or a
Markov chain distribution [13], [14], [27]. Nevertheless, with

1Since P0|0 > 0, by the second line of (3), Pk ∈ SQ,∀k > 0. It is without
loss of generality to assume P0 ∈ SQ.

the CHANCE mechanism, the packet loss process is neither
i.i.d. nor Markovian as discussed in Remark 1. Therefore, we
derive new necessary and sufficient conditions for the MSE
stability of the state estimation.

B. CHANCE in the Cyber Space

The sensor is equipped with one antenna that can sense
the signals in the licensed and unlicensed channels. To handle
multi-channel sensing, sequential sensing (SS) and wideband
sensing (WS) are two candidate methods [3]. With SS, the
sensor scans the channels one-by-one until finding an idle
channel and then transmit its data on it. In this way, the sensor
can apply low-complexity spectrum sensing strategy, e.g.,
energy detection. In contrast, WS is able to handle multiple
channels at the same time; however, it usually requires the
sensor to be enough powerful for carrying out high-complexity
calculations [3], [28]. In addition, since SS only sense a subset
of all the channels in each round, it is likely to consume less
energy than WS. Therefore, we apply SS in our study.

As shown in Fig. 2, CHANCE runs as follows. In each
step, the sensor first scans the licensed channels following an
ordered channel index set Qm. It will stop sensing and transmit
packet through the first channel that is sensed idle (unoccupied
by its PU). If all the licensed channels in Qm are sensed busy,
the sensor will transmit over the original channel CH0. During
scanning, the channel sensing time spent on channel CHi is
τi. Assume that τi is small enough such that the maximum
scanning time will not exceed one step, i.e.,

∑m
i=1 τi < T ,

and that the channel state does not change during τi. Without
loss of generality, let Qm = (1, . . . ,m).

For each i ∈ Qm, denote the state of CHi at the time when
the sensor senses CHi in step k as si,k ∈ {0, 1}. si,k = 1 if
CHi is busy and si,k = 0 otherwise. Denote oi,k ∈ {0, 1} as
the sensing result such that oi,k = 0 if CHi is sensed idle;
in this case, the sensor will switch to CHi for transmission2.
Conversely, oi,k = 1 indicates that CHi is sensed busy. Once
a transmission on CHi is completed, the sensor switches back
to CH0 in order to minimize possible interference to the PU.

Channel Modeling: We assume that transmissions on CH0

suffer from i.i.d. packet losses with average loss rate ℓ0.
For each licensed channel CHi, define its idle state loss
rate ℓi as the loss rate of packets transmitted on CHi when
CHi is idle, to account for factors such as path fading
and environmental noises. The PU’s activities on CHi are
modeled as a continuous-time Markov process: the busy and
idle periods of CHi obey exponential distributions with means
1
ωi,1

and 1
ωi,0

, respectively. In case ωi,1 = 0 (or ωi,0 = 0), CHi

becomes always busy (or idle). Under the hypothesis that ωi,1
and ωi,0 are known parameters, performing channel sensing on
a constantly busy (idle) channel is unnecessary. Therefore, we
assume ωi,1ωi,0 > 0 in the sequel. The following proposition
derives the probability transition matrix Φi of CHi where
[Φi]jl =: P{si,k+1 = l − 1|si,k = j − 1}. Its proof can be
found in Appendix A.

2We assume that there is another common control channel for the sensor
to inform the estimator to receive on CHi [29].
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Proposition 1: {si,k}k≥0 forms a homogeneous Markov
chain with transition probability matrix

Φi =

[
1− αi αi
βi 1− βi

]
(5)

where αi =
ωi,0

ωi,1+ωi,0

[
1 − e−(ωi,1+ωi,0)T

]
and βi =

ωi,1

ωi,1+ωi,0

[
1− e−(ωi,1+ωi,0)T

]
.

Remark 1: Since ωi,1ωi,0 > 0, 0 < αi + βi < 1. For finite
sampling period T , the sequence {(si,k, γk) : k ≥ 0} forms a
hidden Markov process with si,k as the hidden state and γk
as the observation [30]. Due to imperfect channel sensing (see
below), present packet loss rate may depend on all historical
data. In other words, the packet loss process under CHANCE
is generally neither an i.i.d. process nor a Markov chain,
making many existing results in the literature inapplicable.

Remark 2: Above we describe a simple model for CHi.
However, the results obtained in this paper also hold for more
general models, providing that {si,k}k≥0 is a homogeneous
Markov chain with known transition probability matrix Φi
and that 0 < αi + βi < 1. For example, the semi-Markov
model presented in [22] can be adopted to allow any given
homogeneous distributions of the busy/idle periods. In this
case, the transition probability matrix Φ can be obtained by the
method proposed in [31]. We will compare the performance
of CHANCE and the strategy proposed in [22] in Section V.

Channel Sensing: There are a few channel sensing tech-
niques available, such as energy detection (which is simple
but has relatively low accuracy) and feature detector (which
is more accurate but requires prior knowledge of the PU’s
signals) [32]. To characterize the channel sensing accuracy,
we define two conditional probabilities, i.e., pd,i = P{oi,k =
0|si,k = 0} and pf,i = P{oi,k = 0|si,k = 1}, as the correct
detection and false detection probabilities, respectively. For
perfect channel sensing, pd,i = 1 and pf,i = 0. Generally, pd,i
and pf,i highly depend on the sensing technique. It is worth
noticing that our results do not rely on any particular formulas
of the above two probabilities.

III. THE SINGLE-LICENSED-CHANNEL CASE

We begin with the simple single-licensed-channel case (i.e.,
m = 1) while extensions to general cases are presented in
the next section. In this section, we first study the conditions
for the estimation stability. Then we show how CHANCE
can expand the estimation stability region. We analyze the
estimation performance bounds and find the conditions when
CHANCE certainly improves the performance.

Suppose the licensed channel is CH1. The suffix 1 indi-
cating CH1 in the above defined variables is dropped in this
section since the indication is clear. Denote the conditional
packet loss probabilities on the state of CH1 by ψ1 , P{γk =
0|sk = 0} and ψ2 , P{γk = 0|sk = 1}. In case that CH1

is idle, the measurement packet will get lost with probability
equals to either ℓ1 (if the channel sensing result is ok = 0
and thus the packet is delivered over CH1) or ℓ0 (if ok = 1
and thus packet is transmitted on CH0). Therefore, ψ1 can be
expressed below. The expression for ψ2 is similar.{

ψ1 = pdℓ1 + (1− pd)ℓ0 , ψ1(pd),

ψ2 = pf + (1− pf )ℓ0 , ψ2(pf )
(6)

Note that the two equations in (6) are asymmetric because
a packet will get lost at rate ℓ1 under correct detection, but
will certainly lose under false detection. Define the sensing
matrix Ψ , Diag{ψ1, ψ2} and the critical matrix ΦΨ =[
ψ1(1− α) ψ2α
ψ1β ψ2(1− β)

]
. Let σ2 ≥ σ1 be the eigenvalues

of the critical matrix. [ΦΨ]ij represents the conditional prob-
ability P{γk = 0, sk = j − 1|sk−1 = i− 1}.

A. Stability Conditions
Theorem 1: A necessary condition for the MSE stability of

the estimation applied with CHANCE is:

σ2ρ(A)
2 < 1. (7)

Theorem 2: If C has full column rank, condition (7) is both
necessary and sufficient.

Remark 3: The above result is more general than some
existing conditions. For example,

1) in the special case with pd = pf = 0, CH1 will never
be accessed, i.e., all the transmissions are carried out
over CH0 with i.i.d. packet loss rate ℓ0. In this case
ψ1 = ψ2 = ℓ0, σ2 = ℓ0, and condition (7) reduces to
ℓ0ρ(A)

2 < 1 which recovers existing result in [13].
2) in the special case with ℓ1 = 0 and pf = pd = 1, all the

transmissions are carried out over CH1 and the packet
loss process obeys Markov distribution with recovery
rate P{γk = 1|γk−1 = 0} = P{sk = 0|sk−1 = 1} = β.
In this case, ψ1 = 0, ψ2 = 1 and σ2 = 1 − β. As a
result, condition (7) reduces to (1−β)ρ(A)2 < 1 which
recovers the condition proposed in [14].

Remark 4: Condition (7) provides a joint condition for both
physical and cyber spaces. It can be interpreted as follows. If
we define s̃k = (γk = 0, sk) which combines packet loss and
channel state, then the critical matrix is indeed the probability
transition matrix for the joint state s̃k. σ2 can be viewed as a
measure of how frequently the measurement packets get lost,
while ρ(A) is a measure of how fast the system evolves [33].
1 − σ2ρ(A) can be roughly interpreted as the rate of real-
time system information transmitted from the sensor to the
estimator, and hence condition (7) means that rate is positive.

For high dimensional systems, the matrix C of a single
sensor may be a “wide” matrix and may not have full column
rank. However, our results still can be valid in some practical
cases. For example, if the sensor under concern is the head
of a cluster of sensors, it can gather measurements from them
and report the total information to the estimator. In this case,
the whole observation matrix C will have enough rows to
have full column rank. For general C, it is mathematically
difficult to derive necessary and sufficient conditions for the
MSE stability. However, for a class of non-degenerate systems,
one can follow the methods in [14], [34] to derive the stability
conditions. The results are omitted due to space limitations.

In the rest of this section, we assume that the quality of CH1

in its idle state is better than that of CH0, i.e., ℓ1 < ℓ0. If
otherwise, the sensor better stays on CH0, which reduces the
system to the conventional single channel case. Also assume
that C has full column rank for simplicity. We use superscript
† on the variables to indicate the case without CHANCE.
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B. Stability Gain Analysis

Define the stability region Ω such that ∀A ∈ Ω, the
estimation process is MSE stable. According to Theorem 2,
Ω =

{
A|σ2ρ(A)2 < 1

}
. Define the stability region radius as

|Ω| , maxA∈Ω{ρ(A)} and the stability gain as η , |Ω|
|Ω†| . It

is easy to see that |Ω†| = 1√
ℓ0

and |Ω| = 1√
σ2

according to
Theorem 2. The following theorem characterizes the stability
gain for which the proof is omitted due to space limitations.

Theorem 3: The stability gain η is monotonically increas-
ing as the correct detection probability pd increases or the false
detection probability pf decreases. Moreover,

η =

√
ℓ0
σ2

≤ min

{
1√

1− β
,

√
ℓ0
ℓ1

}
. (8)

The theorem shows that, in order to expand the stability
region (i.e., η > 1), we must have σ2 < ℓ0. Since ℓ1 < ℓ0,
by Lemma 1, we know that σ2 is monotonically decreasing as
either pd increases or pf decreases. Therefore, the condition
σ2 < ℓ0 yields a lower (or an upper) bound of pd (or pf ). The
upper bound in (8) is achievable if CH1 is a constant channel
(i.e., it is always busy or idle) and channel sensing is perfect
(i.e., pd = 1, pf = 0). If CH1 is always busy, the sensing
results will always suggest to transmit on CH0 (with loss rate
ℓ0) and thus η = 1; similarly, if CH1 is constantly idle, CH1

will be always used and η =
√

ℓ0
ℓ1

.

C. Performance Analysis

In this part, we analyze the estimation performances in
terms of the mean estimation error covariance Tr(E[Pk]). We
assume that both ℓ0 and σ2 are less than 1

ρ(A)2 since otherwise
either Tr(E[Pk]) or Tr(E[P †

k ]) will grow to infinity based on
Theorem 2, making the performance comparison trivial.

Theorem 4: If ψ2(1−β)+ψ1β ≤ ℓ0 and the initial condi-
tions satisfy P †

0 = P0, then ∀k ≥ 0, Tr(E[Pk]) ≤ Tr(E[P †
k ]).

Moreover, if ψ2(1− β) + ψ1β < ℓ0, the inequality is strict.
By (6), the condition ψ2(1−β)+ψ1β < ℓ0 is equivalent to

pfβ(1− ℓ0) < pd(1− β)(ℓ0 − ℓ1), which yields an upper (or
lower) bound of pf (or pd). For energy detection mentioned
above, this condition can be satisfied by appropriately tuning
the channel sensing time and detection threshold [3]. Hence,
Theorem 4 reveals that, under a mild condition, the estimation
performance is definitely improved by CHANCE. Note that the
improvement is guaranteed in very step.

In general, even though the mean error covariance E[Pk]
is upper bounded, it does not necessarily converge to a
unique steady state. Consider two sequences: {P̄k|P̄k =
(1 − γk)AP̄k−1A

′ + W̄ (1 − γk), k ≥ 0, P̄0 = P0} and
{P k|P k = (1− γk)AP k−1A

′+W (1− γk), k ≥ 0, P̄0 = P0},
where W̄ (·) and W (·) are defined in Definition 1. Below we
show that these sequences are upper and lower bounds of
{Pk}, and both of them converge to their unique steady states
in mean sense. Therefore, these two sequences facilitate us to
study the behavior of E[Pk] over an infinite horizon.

Definition 1: ∀q ∈ [0, 1
ρ(A)2 ), let us define the follow-

ing functions: GA(q) =
∑∞
k=0 q

kA′kAk, W̄ (q) = (1 −
q)A(C ′R−1C)−1A′ + Q, and W (q) = (1 − q)A(Q−1 +

C ′R−1C)−1A′ + Q, where the first function presents the
unique solution of Lyapunov equation3 X = qA′XA + I .
The rest two functions are useful in determining upper and
lower performance bounds.

Theorem 5: ∀k ≥ 0, P k ≤ Pk ≤ P̄k and E[P k] ≤ E[Pk] ≤
E[P̄k]. Moreover,

lim
k→∞

Tr(E[P k]) = Tr(E[P∞])

=δTr(W (σ1)GA(σ1)) + (1− δ)Tr(W (σ2)GA(σ2)) (9)
lim
k→∞

Tr(E[P̄k]) = Tr(E[P̄∞])

=δTr(W̄ (σ1)GA(σ1)) + (1− δ)Tr(W̄ (σ2)GA(σ2)) (10)

where δ = σ2−γ̄
σ2−σ1

< 1 and γ̄ = 1
α+β (βψ1 + αψ2). In case

ρ(A) > 1, both bounds Tr(E[P∞]) and Tr(E[P̄∞]) decrease
monotonically as the correct detection probability pd increases.

Theorem 5 shows that the bounds relate to many parameters
involved in the physical process model, the channel model
and the channel sensing mechanism. It also gives a useful
guidance that increasing the correct detection probability is
always beneficial. Intuitively, increasing pd means the sensor
can accurately seize more opportunities to utilize the idle
portion of CH1. Hence, the packet loss probability can be
reduced (since ℓ1 < ℓ0) and the estimation performance can
be improved. Based on this theorem, we are able to further
quantitatively study how much the performance is improved by
using CHANCE. With the above bounds, we study the worst
case performance ratio φ∞ , Tr(E[P̄∞])

Tr(E[P †
∞])

.

Theorem 6: If σ2 < ℓ0 and P †
0 = P0, Tr(E[P∞]) <

Tr(E[P †
∞]), Tr(E[P̄∞]) < Tr(E[P̄ †

∞]), and the worst case
performance ratio is

φ∞ = δ
Tr

(
W̄ (σ1)GA(σ1)

)
Tr (W (ℓ0)GA(ℓ0))

+ (1− δ)
Tr

(
W̄ (σ2)GA(σ2)

)
Tr (W (ℓ0)GA(ℓ0))

.

(11)
Moreover, φ∞ is a monotonic decreasing function of pd.

The bounds in (9) and (10) are generally conservative
mainly because of the gap between W̄ (·) and W (·) due
to the difference between A(C ′R−1C)−1A′ and A(Q−1 +
C ′R−1C)−1A′. However, since A[(C ′R−1C)−1 − (Q−1 +
C ′R−1C)−1]A′ = A(C ′R−1C)−1(I + C ′R−1CQ)−1A′, if
either the measurement noise covariance R is sufficiently small
or the system noise covariance Q is large, the above gap
shrinks and thus the bounds become tight. In the extreme
case where R is zero, W̄ (·) = W (·) = Q. Thus, the two
bounds coincide and the performance ratio can be determined.
To illustrate this, consider a class of special scalar systems
with R = 0. Both Pk and P †

k converge, and if P †
0 = P0, the

performance ratio is φ∞ = P∞
P †

∞
= δ 1−ℓ0A2

1−σ1A2 +(1−δ) 1−ℓ0A2

1−σ2A2 ≤
1−ℓ0A2

1−σ2A2 which is clearly less than 1 if σ2 < ℓ0.

IV. EXTENSION TO MULTI-LICENSED-CHANNEL CASE

In this section, we consider that the sensor can opportunis-
tically access multiple licensed channels. We first update the
critical matrix, based on which the stability conditions and
estimation performance analysis are then updated.

3Let Ã =
√
qA, we get the standard form of Lyapunov equation. Since

ρ(Ã) < 1, the finiteness and uniqueness of X is guaranteed.
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A. The Critical Matrix ΦΨ

Define mapping Bm(·) as follows. ∀b ∈ {1, . . . , 2m}, there
exists a unique binary vector Bm(b) = [b1, . . . , bm]′ such that
b =

∑m
j=1 2

j−1bj + 1. In other words, Bm(b) is the binary
representation of b−1. Obviously, the inverse mapping B−1

m (·)
also exists and is unique. For the m licensed channels, define
the channel state vector sk = [s1,k, . . . , sm,k]

′. Since each
channel has two states, sk has totally 2m possibilities, each of
which corresponds to a unique number in {1, . . . , 2m} via the
mapping B−1

m (sk). Define the channel state probability vector
pk = [p1,k, . . . , p2m,k]

′, where pb,k = P{sk = Bm(b)} =∏m
i=1 P{si,k = [Bm(b)]i}, ∀b ∈ {1, . . . , 2m}. Obviously,∑2m

b=1 pb,k = 1. Based on pk, we can define the new transition
probability matrix Φ whose dimension is 2m×2m. Due to the
hypothesis of inter-channel independencies, each entry of Φ is

[Φ]ij ,P
{
sk+1 = Bm(j)|sk = Bm(i)

}
=

m∏
l=1

P
{
sl,k+1 = [Bm(j)]l|sl,k = [Bm(i)]l

}
, (12)

where i, j ∈ {1, . . . , 2m}. Thus, one can easily prove that

Φ = Φm ⊗ Φm−1 ⊗ · · · ⊗ Φ1 ,
m⊗
i=1

Φi, (13)

where “⊗” represents the Kronecker product.
The sensing matrix Ψ is in the form Diag{ψ1, . . . , ψ2m},

where ∀b ∈ {1, . . . , 2m}, ψb , P{γk = 0|sk = Bm(b)}.
Denote ℓsi as the packet loss rate on CHi when it is in state
s: ℓsi = 1 if s = 1 and ℓsi = ℓi otherwise. Thus,

ψb = P {γk = 0|[s1,k, . . . , sm,k]′ = Bm(b)}
=P{o1,k = 0|s1,k = b1}ℓb11 + P{o1,k = 1|s1,k = b1}
× P{o2,k = 0|s2,k = b2}ℓb22 + · · ·+ P{o1,k = 1|s1,k = b1}
× · · · × P{om−1,k = 1|sm−1,k = bm−1}
× P{om,k = 0|sm,k = bm}ℓbmm
+ P{o1,k = 1|s1,k = b1} · · ·P{om,k = 1|sm,k = bm}ℓ0

=
m∑
i=1

(i−1∏
j=1

P{oj,k = 1|sj,k = bj}
)
P{oi,k = 0|si,k = bi}ℓbii

+ ℓ0

m∏
i=1

P{oi,k = 1|si,k = bi} (14)

where the second equality is based on the definition of sensing
sequence Qm. P{oi,k = 0|si,k = bi} equals to pd,i if bi = 0
and to pf,i if bi = 1. P{oj,k = 1|sj,k = bj} = 1 − P{oj,k =
0|sj,k = bj}. Thus, Ψ and the critical matrix are obtained.

B. Stability Analysis
Theorem 7: For system (1) with the above channel sensing

schedule Qm, a necessary condition for the MSE stability of
the estimation process applied with CHANCE is

ρ (ΦΨ) ρ(A)2 < 1. (15)

Moreover, (15) is also sufficient if C has full column rank.
In the following, we assume that C has full column rank

for simplicity. As mentioned before, extensions to a special
class of non-degenerate systems are possible but algebraically
complicated and thus are omitted due to space limitations.

C. Performance Analysis

Theorem 8: Let ℓmin = min{ℓ0, ℓ1, . . . , ℓm}. With the
sensing schedule Qm, the stability gain η satisfies

η =

√
ℓ0

ρ (ΦΨ)
≤ min

{
1√∏m

i=1(1− βi)
,

√
ℓ0
ℓmin

}
, (16)

Let ℓ̃∗ , max{e′iΦΨu, ∀i ∈ {1, . . . , 2m}}, where ei is a
2m × 1 vector with [ei]i = 1 and [ei]j = 0 for all j ̸= i, u =
[1, . . . , 1]′1×2m . Similar to Theorem 4, the following theorem
establishes the relationship between Tr(E[Pk]) and Tr(E[P †

k ])
for multi-licensed-channel cases. We focus on the nontrivial
cases that ℓ0 < 1

ρ(A)2 and (15) are satisfied.
Theorem 9: If ℓ̃∗ ≤ ℓ0 and the initial conditions satisfy

P †
0 = P0, then ∀k ≥ 0, Tr(E[Pk]) ≤ Tr(E[P †

k ]).
Theorem 10: ∀k ≥ 0, P k ≤ Pk ≤ P̄k and E[P k] ≤

E[Pk] ≤ E[P̄k] where {P k} and {P̄k} are defined above
Theorem 5. Moreover,

Tr(E[P∞]) =

∞∑
i=0

[
υ′ (ΦΨ)

i
uTr

(
W (ϱ)A′iAi

)]
, (17)

Tr(E[P̄∞]) =

∞∑
i=0

[
υ′ (ΦΨ)

i
uTr

(
W̄ (ϱ)A′iAi

)]
, (18)

where υ is the stationary state of the vector pk, ϱ = 1−υ′(I−
ΦΨ)u. If P †

0 = P0,

φ∞ ≤
Tr

(
W̄ (ϱ)GA (ρ(ΦΨ))

)
Tr (W (ℓ0)GA(ℓ0))

. (19)

Remark 5: We focus on the scenario with one unlicensed
channel and multiple licensed channels; however, our results
are applicable to a wide range of scenarios. For example,
(1) CH0 is Markovian: consider another channel sensing
order which differs from Qm in that the sensor will directly
transmit packet through CHm if CHm−1 is sensed busy (i.e.,
pf,m = pd,m = 1). If we deem CHm as the original channel,
Theorem 7 is directly applicable to that the original channel
has Markovian packet losses. Moreover, suppose m = 1 and
deem CHm as the original channel; the scenario that the
original channel is Markovian and CHANCE is not applied
can be viewed as a special single-licensed-channel case. Then,
the estimation performance can be analyzed in the way shown
in Section III, and the results can be used to update Theorems
8-10. (2) Sensing multiple unlicensed channels: if the state
dynamics of the unlicensed channels can be modeled by
homogeneous Markov chains as shown in Proposition 1, one
can see that our results are seamlessly applicable. In particular,
an i.i.d. channel model is a special Markov model with
α+β = 1; in this case, it can be easily seen that the proofs of
our theorems are still valid, and hence the theorems hold when
multiple i.i.d. unlicensed channels are sensed by CHANCE.

V. SIMULATIONS

In this section, we evaluate the performances of the pro-
posed mechanism based on a CPS with the physical process
described by (1). We adopt the same parameters as in [13]:

A =

[
1.25 0
1 1.1

]
and Q = 20I2×2. The sensor measurements
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are described by (2), where C = I2×2, R = 2.5I2×2, and the
sampling period T = 1. The average loss rate on the original
channel CH0 is ℓ0 = 0.5. On licensed channel CH1, the
average busy and idle periods are 1

ωi,1
= 0.35 and 1

ωi,0
= 0.3,

respectively. By Lemma 2, we have α = 0.537 and β = 0.461.
The measurement packets transmitted through CH1 during its
idle state will experience a loss rate ℓ1 = 0.05. The correct
and false detection probabilities are pd = 0.8 and pf = 0.3,
respectively. Thus, the largest eigenvalue of the critical matrix
ΦΨ is σ2 ≈ 0.415 < ℓ0 <

1
ρ(A)2 . Hence, the Kalman filter

based state estimation is stable in mean square sense either
with or without CHANCE. However, the two cases achieve
different performance in terms of Tr(E[Pk]). As shown in Fig.
3(a), CHANCE achieves much better estimation performance.

Fig. 3 shows the performance bounds obtained in Theorem
5. First, we observe that the bounds are tight in our simulation
case. Without CHANCE, it is well known that the estimation
error covariance diverges if ℓ0 is larger than 1

ρ(A)2 = 0.64. In
contrast, with CH1 and CHANCE, the critical value increases
significantly, i.e., the requirement for estimation stability is
relaxed. From Fig. 3(b) we observe that CHANCE improves
the estimation performance when ℓ0 ≥ 0.34. In fact, when
ℓ0 ≥ 0.34, both σ2 < ℓ0 and ψ2(1 − β) + ψ1β ≤ ℓ0 are
true. Hence, by Theorem 4 and Theorem 6, the estimation
performance is guaranteed to be improved. However, the figure
also shows that there is a performance degradation when ℓ0 <
0.34 such that the quality of CH0 is much better than that of
CH1 (the packet loss rate on CH0 is lower than that of jointly
using CH0 and CH1). This can be solved by improving the
channel sensing accuracy as implied by Theorem 6.
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Fig. 3. Performance comparison between with and without CHANCE.

More licensed channels will provide higher opportunities for
the sensor to successfully transmit its measurement packets.
To illustrate this, we introduce m licensed channels to the
system and each of them has the same property as CH1

mentioned above. The correct and false detection probabilities
over them are also set the same. The performance bounds
and performance ratio obtained in Theorem 10 are shown in
Table II, where m = 0 indicates the case without CHANCE.
We can observe that: 1) with CHANCE, the upper bound
and the relaxed upper bounds are quite close in all cases.
2) The worst case performance ratio is less than 36.68%; in
other words, the mean square estimation error is reduced by at
least 63.32%. 3) The performance is obviously improved by
introducing to CHANCE more licensed channels. Whereas,
such performance improvement becomes less significant as m
increases. Therefore, if the cost (e.g., energy expenditure) for
channel sensing and switching is a concern, the sensor only

needs to sense a few channels before each transmission.
We also conduct simulations to compare CHANCE and the

mechanism (which we call as RANDOM) proposed in [22].
With RANDOM, in each step, the sensor chooses the same
channel to sense if the channel is found idle in previous step;
otherwise, it randomly chooses a different licensed channel
to sense. To be comparable with CHANCE, RANDOM is
enhanced by adding the original channel in the way that the
sensor transmits data on the current channel if it is sensed idle
and on the original channel otherwise. From Fig. 4 (where
m = 3), we can see that CHANCE outperforms RANDOM.
This is because, in each step, RANDOM senses only one
channel while CHANCE may sense more; hence CHANCE
gets more opportunity for transmitting during the channels’
idle periods. Moreover, as expected, the estimation error is
reduced monotonically as the correct detection probability
increases in both mechanisms, which is shown in Fig. 4(b).
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Fig. 4. Performance comparison between CHANCE and RANDOM [22].

VI. CONCLUSION

We have studied the state estimation problem in a class of
CPS with linear process state dynamics. Based on the cognitive
radio technology, we propose the CHANCE mechanism for
the sensor to opportunistically access licensed spectrum for
data transmissions. We develop new necessary and sufficient
conditions for the estimation stability in mean square sense.
For a special class of systems, we show that the estimation
stability region is expanded by CHANCE. We also obtain a
pair of upper and lower bounds for the estimation performance,
and prove that they are monotonically decreasing as the
correct detection probability increases. Explicit mathematical
expression for the worst case performance ratio is derived.
We also extend our results to accommodate any number of
licensed channels. Simulation results show that the estimation
performance is dramatically improved by CHANCE.

APPENDIX

A. Proof of Proposition 1
Due to the Markov property of the PU’s activities on

CHi, the sequence {si,k}k≥0 is a homogeneous Markov
chain, and the steady distributions are P{si,k = 1} =

ωi,1

ωi,1+ωi,0
and P{si,k = 0} =

ωi,0

ωi,1+ωi,0
, respectively. Con-

sider the continuous-time channel state si(t). According to
Kolmogorov’s Backward Equations, ∂Φi

∂t (t) = GΦi(t), where
[Φi(t)]jl , P{si(t) = l|si(0) = j}, and the generator

matrix is G =

[
−ωi,0 ωi,0
ωi,1 −ωi,1

]
according to [35]. Then,

Φi = Φi(T ) = eGT , which finally yields (5).



8

Table II
PERFORMANCE BOUNDS AND WORST-CASE RATIO.

Number of licensed channels m 0 1 2 3 4 5 6 7 8
Lower bound Tr(E[P∞]) 847.8 306.27 215.93 187.10 175.64 170.65 168.39 167.35 166.86
Upper bound Tr(E[P̄∞]) 857.89 310.78 219.37 190.18 178.57 173.52 171.23 170.17 169.68

Worst case performance ratio by (19) 100% 36.68% 25.90% 22.45% 21.08% 20.48% 20.21% 20.09% 20.03%

B. Proof of Theorem 1
We first introduce several useful lemmas.
Lemma 1: σ2 = ρ(ΦΨ) and σ1,2 = 1

2 [ψ1(1 − α) +

ψ2(1−β)∓
√

[ψ1(1− α)− ψ2(1− β)]2 + 4ψ1ψ2αβ]. More-
over, both σ1 and σ2 are monotonically increasing as either
ψ1 or ψ2 increases. If ℓ1 ≤ ℓ0, ℓ1 ≤ ψ1 ≤ ℓ0 ≤ ψ2 ≤ 1.

The following lemma models the packet loss process under
CHANCE. ∀k1 > 0 and ∀k2 ≥ k1, denote successive packet
losses as γ(k1, k2) = 0 which means {γk1 = 0, γk1+1 =
0, . . . , γk2 = 0}. Define matrix Mk with each entry [Mk]ij ,
P{sk = j − 1, γ(1, k) = 0|s0 = i− 1}.

Lemma 2: Mk = (ΦΨ)k, ∀k ≥ 0. Moreover, ∀k1 > 0 and
∀k2 ≥ k1, ∃ε1,k1 ∈ [−ε̄1, ε̄1] and ε2,k1 ∈ [ε2, ε̄2] such that
the successive packet loss probability is P{γ(k1, k2) = 0} =
ε1,k1σ

k2+1−k1
1 + ε2,k1σ

k2+1−k1
2 , where ε̄1, ε2 and ε̄2 are all

finite positive numbers.
Proof: ∀k > 0, from the definition of matrix Mk,

[Mk]11 = P {sk = 0, sk−1 = 0, γ(1, k) = 0|s0 = 0}
+ P {sk = 0, sk−1 = 1, γ(1, k) = 0|s0 = 0}

= P
{
γk = 0, sk = 0

∣∣sk−1 = 0, γ(1, k − 1) = 0, s0 = 0
}

× [Mk−1]11 + [Mk−1]12

× P
{
γk = 0, sk = 0

∣∣sk−1 = 1, γ(1, k − 1) = 0, s0 = 0
}

= P
{
γk = 0, sk = 0

∣∣sk−1 = 0
}
[Mk−1]11

+ P
{
γk = 0, sk = 0

∣∣sk−1 = 1
}
[Mk−1]12

= ψ1[Φ]11[Mk−1]11 + ψ1[Φ]21[Mk−1]12. (20)

where the third equality is because of the Markov property
of the channel state. The other three entries of Mk can be
similarly obtained. Then, we have Mk = Mk−1ΦΨ. By
definition, M0 = I . Hence, Mk = (ΦΨ)k. Moreover, there
exists an invertible matrix Fσ such that ΦΨ = FσΛσF

−1
σ ,

where Λσ = Diag{σ1, σ2}. Therefore, Mk = FσΛ
k
σF

−1
σ .

Define the channel state probability vector pk = [p0,k, p1,k]
′,

where pb,k = P{sk = b|b ∈ {0, 1}}. Then, the successive
packet loss probability can be written as P{γ(k1, k2) =
0} = P{γ(k1, k2) = 0|sk1−1 = 1}p1,k1−1 + P{γ(k1, k2) =
0|sk1−1 = 0}p0,k1−1. Thus,

P{γ(k1, k2) = 0} = P{γ(1, k2 + 1− k1) = 0|s0 = 1}p1,k1−1

+ P{γ(1, k2 + 1− k1) = 0|s0 = 0}p0,k1−1

= ([Mk2+1−k1 ]21 + [Mk2+1−k1 ]22) p1,k1−1

+ ([Mk2+1−k1 ]11 + [Mk2+1−k1 ]12) p0,k1−1

= p′
k1−1Mk2+1−k1u = p′

k1−1FσΛ
k2+1−k1
σ F−1

σ u (21)

=
ψ1z − σ1 + (ψ2 − ψ1)zp0,k1−1

σ2 − σ1
σk2+1−k1
1

+
σ2 − ψ1z − (ψ2 − ψ1)zp0,k1−1

σ2 − σ1
σk2+1−k1
2

= ε1,k1σ
k2+1−k1
1 + ε2,k1σ

k2+1−k1
2 (22)

where u = [1, 1]′ and z = 1 − α − β. The boundedness of
ε1,k1 and ε2,k1 is clear since p0,k−1 ∈ [0, 1].

Lemma 3: ∀A ∈ Rn×n and ∀k > n, (1) there exist
ζ1 > 0 and ζ2 > 0 such that ζ1ρ(A)2k ≤ Tr

(
AkA′k) <

ζ2k
2nρ(A)2k. (2) ∀σ > 0 and ∀S ∈ SQ where SQ is defined

in Section II-A, ∃ζ3, ζ4 > 0 such that

k−1∑
i=0

Tr
(
σiAiSA′i)

≥
{
ζ3k, if σρ(A)2 = 1,
ζ4

∣∣σkρ(A)2k − σnρ(A)2n
∣∣ , if σρ(A)2 ̸= 1

(23)

Proof: (1) Let λ1, . . . , λq be the distinct eigenvalues (may
be complex) of A where ρ(A) = |λ1| > |λ2| > · · · > |λq|.
There exists an invertible matrix FA such that A = FAJF

−1
A ,

where J is the Jordan canonical form of A with each block
Ji ∈ Cni×ni corresponds to λi. Moreover, ∀k ≥ ni, we have

Jki =

λ
k
i · · ·

(
k

ni−1

)
λk−ni+1
i

. . .
...
λki


ni|λi|2k ≤ Tr((Jki )

HJki ) < n2
i k

2ni |λi|2(k−ni+1)

Let ζ̃1 = λmin((FA)
HFA)λmin(F

−1
A (F−1

A )H) > 0
and ζ̃2 = λmax((FA)

HFA)λmax(F
−1
A (F−1

A )H) > 0.
Then, Tr(AkA′k) = Tr(FAJ

kF−1
A (F−1

A )H(Jk)H(FA)
H) ≥

ζ̃1
∑q
i=1 Tr((J

k
i )
HJki ) ≥ ζ1ρ(A)

2k where ζ1 > 0. Since
Tr

(
(Jki )

HJki
)
<

n2
i

|λi|2(ni−1) k
2ni |λi|2k < n2

|λq|2(ni−1) k
2n|λ1|2k

for |λi| > 0, Tr(AkA′k) ≤ ζ̃2
∑q
i=1 Tr(J

′k
i J

k
i ) <

ζ̃2k
2n|λ1|2k

∑q
i=1

n2

|λq̄|2(ni−1) < ζ2k
2nρ(A)2k, where ζ2 > 0

and |λq̄| = min{|λi| > 0|i = 1, . . . , q}.
(2) ΓSΓ

′
S > 0 where ΓS = [

√
S,A

√
S, . . . , An−1

√
S].

∀k > n, ∃h ≥ 1 such that k ∈ [hn, hn + n). By Lemma 3,∑k−1
i=0 Tr(σiAiSA′i) ≥

∑h−1
j=0 Tr(σjnAjnΓSΓ

′
SA

′jn) ≥
λmin(ΓSΓ

′
S)ζ1

∑h−1
j=0 σ

jnρ(A)2jn. If σρ(A)2 = 1,
∃ζ3 > 0,

∑k−1
i=0 Tr(σiAiSA′i) ≥ hλmin(ΓSΓ

′
S)ζ1 ≥ ζ3k.

Otherwise, if σρ(A)2 < 1,
∑k−1
i=0 Tr(σiAiSA′i) ≥

λmin(ΓSΓ
′
S)ζ1

1−σhnρ(A)2hn

1−σnρ(A)2n ≥ ζ4(σ
nρ(A)2n − σkρ(A)2k),

where ζ4 > 0. Similarly, if σρ(A)2 > 1,∑k−1
i=0 Tr(σiAiSA′i) ≥ ζ4[σ

kρ(A)2k − σnρ(A)2n].
Lemma 4: ∀A ∈ Rn×n and ∀S ∈ SQ, under the packet

loss process {γk}k≥0 described in Section II-A, the sequence
{Xk|Xk = (1−γk)AXk−1A

′+S, ∀k ≥ 0, X0 ∈ SQ} is stable
in mean sense iff. σ2ρ(A)2 < 1.

Proof: ∀k > 0, we have Xk = (1−γk)AXk−1A
′]+S =∏k

i=1(1−γi)AkX0A
′k+

∑k−1
i=1

∏k
j=k+1−i(1−γj)AiSA′i+S.

Taking expectation at both sides yields
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E[Xk] =
k−1∑
i=1

P{γ(k + 1− i, k) = 0}AiSA′i

+ P{γ(1, k) = 0}AkX0A
′k + S

=
k−1∑
i=1

(
ε1,k+1−iσ

i
1 + ε2,k+1−iσ

i
2

)
AiSA′i

+
(
ε1,1σ

k
1 + ε2,1σ

k
2

)
AkX0A

′k + S (24)

1) Sufficiency: By Lemma 2, we have Tr(E[Xk]) ≤
Tr(S)+(ε̄1+ε̄2)[σ

k
2Tr

(
AkX0A

′k)+∑k−1
i=1 σ

i
2Tr

(
AiSA′i)] ≤

Tr(S) + (ε̄1 + ε̄2)[Tr(S)
∑k−1
i=1 i

2n(σ2ρ(A)
2)i +

Tr(X0)k
2n(σ2ρ(A)

2)k]. If σ2ρ(A)2 < 1, ∃ε ∈ (σ2ρ(A)
2, 1)

such that k2n < ε
σ2ρ(A)2 (k − 1)2n holds for all

k > k =
⌈

1
2n
√

ε
σ2ρ(A)2

−1

⌉
+1 > 1. Thus, ∀k > k,

k2n(σ2ρ(A)
2)k < ε(k − 1)2n(σ2ρ(A)

2)k−1 < · · · <
εk−kk2n(σ2ρ(A)

2)k < ∞ and
∑k−1
i=1 i

2n(σ2ρ(A)
2)i <∑k

i=1 i
2n(σ2ρ(A)

2)i + k2n(σ2ρ(A)
2)k

∑k−1
i=k+1 ε

i−k <∑k
i=1 i

2n(σ2ρ(A)
2)i + k2n(σ2ρ(A)

2)k ε
1−ε < ∞.

Therefore, σ2ρ(A)
2 < 1 is a sufficient condition for

supk≥0 Tr(E[Xk]) <∞.
2) Necessity: Above we know that ε2,k ≥ ε2 > 0 and

also σ2 > |σ1| ≥ 0. Hence ∃k′ > 0 and ε′ > 0 such
that ∀k > k′, −ε̄1(σ1

σ2
)k + ε2 > ε′. Hence, Tr(E[Xk]) ≥∑k−1

i=1 (ε1,k+1−iσ
i
1ε2,k+1−iσ

i
2)Tr(A

iSA′i) ≥
∑k−1
i=1 (−ε̄1σi1+

ε2σ
i
2)Tr(A

iSA′i) > Σ + ε′
∑k−1
i=0 Tr(σi2A

iSA′i), where
Σ =

∑k′−1
i=1

(
−ε̄1σi1 + ε2σ

i
2 − ε′σi2

)
Tr

(
AiSA′i) − ε′Tr(S).

supk≥0 Tr(E[Xk]) > ε′ζ3 supk≥0 k + Σ = ∞ if
σ2ρ(A)

2 = 1. Otherwise, supk≥0 Tr(E[Xk]) > Σ +
ε′ζ4 supk≥0

∣∣σk2ρ(A)2k − σn2 ρ(A)
2n
∣∣. Apparent, the finiteness

of the righthand side of the above inequality requires
σ2ρ(A)

2 < 1. Therefore, σ2ρ(A)2 < 1 is a necessary
condition for supk≥0 Tr(E[Xk]) <∞.

The predicted error covariance Pk is lower bounded by [13]

Pk ≥ (1− γk)APk−1A
′ +Q. (25)

Then, based on Lemma 4, Theorem 1 can be proved.

C. Proof of Theorem 2

First, it is easy to verify that (P−1
k−1+C

′R−1C)−1C ′R−1 =
Pk−1C

′(CPk−1C
′+R)−1. Then, after simple matrix manipu-

lations, Pk can be written as (1−γk)APk−1A
′+γkA(P

−1
k−1+

C ′R−1C)−1A′ + Q. If C has full column rank, (P−1
k +

C ′R−1C)−1 ≤ (C ′R−1C)−1 <∞ since Pk > 0. Therefore,

Pk ≤(1− γk)APk−1A
′ + W̃ (26)

with W̃ = A(C ′R−1C)−1A′+Q. By Lemma 4, σ2ρ(A)2 < 1
is a sufficient condition for MSE stability of the Kalman filter.
Combined with Theorem 1, the proof is thus completed.

D. Proof of Theorem 4

Define following two maps L, R : Sn+ → Sn+. L(X) =
AXA′ + Q and R(X) = AXA′ + Q − AXC ′(CXC ′ +
R)−1CXA′. ∀ϕ ≥ 0, by definitions of ψ1,2, α and β,

P{Pk+1 > ϕI}
=P{L(Pk) > ϕI, sk = 0}ψ1 + P{L(Pk) > ϕI, sk = 1}ψ2

+ P{R(Pk) > ϕI, sk = 0}(1− ψ1)

+ P{R(Pk) > ϕI, sk = 1}(1− ψ2)

=P{L(Pk) > ϕI, sk−1 = 0}[ψ1(1− α) + ψ2α]

+ P{L(Pk) > ϕI, sk−1 = 1}[ψ2(1− β) + ψ1β]

+ P{R(Pk) > ϕI, sk−1 = 0}[(1− ψ1)(1− α) + (1− ψ2)α]

+ P{R(Pk) > ϕI, sk−1 = 1}[(1− ψ2)(1− β) + (1− ψ1)β]

=P{R(Pk) > ϕI, sk−1 = 0}+ P{R(Pk) > ϕI, sk−1 = 1}
+ [ψ1(1− α) + ψ2α]{P{L(Pk) > ϕI, sk−1 = 0}
− P{R(Pk) > ϕI, sk−1 = 0}}
+ [ψ2(1− β) + ψ1β]{P{L(Pk) > ϕI, sk−1 = 1}
− P{R(Pk) > ϕI, sk−1 = 1}},

Since α+ β < 1 (by Remark 1) and ψ1 ≤ ψ2 (by Lemma 1),
ψ1(1− α) + ψ2α = ψ1 + (ψ2 − ψ1)α ≤ ψ1 + (ψ2 − ψ1)(1−
β) = ψ2(1 − β) + ψ1β ≤ ℓ0. Also noticing that, ∀X ∈ Sn+,
L(X) ≥ R(X), we have

P{Pk+1 > ϕI}
≤P{R(Pk) > ϕI, sk−1 = 0}+ P{R(Pk) > ϕI, sk−1 = 1}
+ ℓ0{P{L(Pk) > ϕI, sk−1 = 0}
− P{R(Pk) > ϕI, sk−1 = 0}}
+ ℓ0{P{L(Pk) > ϕI, sk−1 = 1}
− P{R(Pk) > ϕI, sk−1 = 1}}

=ℓ0P{L(Pk) > ϕI}+ (1− ℓ0)P{R(Pk) > ϕI}, (27)

We now apply an induction argument to show that P{Pk >
ϕI} ≤ P{P †

k > ϕI}. Clearly, it holds for k = 0. Suppose
it holds for k > 0, then, P{Pk+1 > ϕI} ≤ ℓ0P{L(P †

k ) >

ϕI} + (1 − ℓ0)P{R(P †
k ) > ϕI} = P{P †

k+1 > ϕI}, where
the inequality holds due to the monotonicity of both L(·) and
R(·) (see Proposition 1 in [27]). Therefore, P{Pk > ϕI} ≤
P{P †

k > ϕI} and hence P{Tr(Pk) > ϕ} ≤ P{Tr(P †
k ) >

ϕ} hold for all k ≥ 0. Furthermore, according to [27],
E[Tr(Pk)] =

∫∞
0

P{Tr(Pk) > ϕ}dϕ. It is not difficult to
see that E[Tr(Pk)] ≤ E[Tr(P †

k )] which proves the first part
of this theorem. For the second part, if R > 0, Q > 0, we
have Pk > 0 and L(Pk) > R(Pk). Combined with that
ψ2(1− β) + ψ1β < ℓ0, the inequality in (27) becomes strict,
which finally leads to that E[Tr(Pk)] < E[Tr(P †

k )].

E. Proof of Theorem 5

We first introduce two lemmas, following which the proof
of Theorem 5 is straightforward. ∀W ∈ S+ and ∀q ∈
[0, 1

ρ(A)2 ), define HA(q,W ) =
∑∞
k=0 q

kAkW (Ak)′. Ob-
viously, GA(q) = HA′(q, I), where GA(q) is defined in
Definition 1. HA(q,W ) is the unique solution of Lyapunov
equation X = qAXA′+W . ∀z ∈ (0, 1), define another series
Zk(z, q,W ) =

∑k
i=0 z

k+1−iqiAiWA′i.
Lemma 5: HA(q,W ) and Zk(z, q,W ) have following

properties: (1) HA(q,W ) is finite and monotonically increases
as q increases. (2) If ρ(A) > 1, ∀W1,W2 ∈ S+, HA(q, (1 −
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q)W1 +W2) is monotonically increasing as q increases. (3)
limk→∞ Zk(z, q,W ) = 0.

Proof: (1) Since q ∈ [0, 1
ρ(A)2 ), the first property is

obvious. (2) Let X̃ = (1 − q)HA(q,W ). First, by a similar
technique as in the proof of Lemma 4, we can show that
∂X̃
∂q is finite. It can be seen that X̃ is the unique solution

of X̃ = qAX̃A′ + (1 − q)W , which gives X̃ − W =
qA(X̃ − W )A′ + q(AWA′ − W ). Since AWA′ − W >
0, X̃ − W > 0 and hence AX̃A′ − W > 0. Taking
derivatives at both sides of the above Lyapunov equation
for X̃ , we have ∂X̃

∂q = qA∂X̃
∂q A

′ + AX̃A′ − W . Therefore,
∂X̃
∂q =

∑∞
k=0 q

kAk(AX̃A′ −W )A′k > 0, which proves the
monotonicity of X̃ . Then, we can prove the statement by
noticing that HA(q, (1− q)W1 +W2) = (1− q)HA(q,W1)+
HA(q,W2). (3) Since z ∈ (0, 1), Zk(z, q,W ) < H(q,W ) <
∞. Z(z, q,W ) = zZk(z, q,W ) + zqk+1Ak+1WA′k+1. As
k → ∞, zqk+1Ak+1WA′k+1 → 0 and Z∞(z, q,W ) =
zZ∞(z, q,W ). Therefore, Z∞(z, q,W ) = 0.

With a little abuse of notation, we define sequence
{Xk|Xk = (1−γk)AXk−1A

′+γkW+Q,W ≥ 0, X0 ∈ SQ}.
Lemma 6: For the above sequence {Xk}, we have: (1)

{Xk} is stable in mean sense iff. σ2ρ(A)2 < 1. (2) If
σ2ρ(A)

2 < 1, {E[Xk]} converges to a unique value E[X∞],
with Tr(E[X∞]) = δTr([(1 − σ1)W + Q]GA(σ1)) + (1 −
δ)Tr([(1− σ2)W +Q]GA(σ2)). (3) If ρ(A) > 1, both E[X∞]
and Tr(E[X∞]) are monotonically decreasing as pd increases.

Proof: (1) It follows directly from Lemma 4.
(2) Given any p0,0 ∈ [0, 1], ∀k > 0, by the definition of

Φ, we have p0,k = (1 − α)p0,k−1 + βp1,k−1 = zp0,k−1 + β,
where z, p0,k and p1,k are defined above (22) in the proof of
Lemma 2. By induction, p0,k = (p0,0 − β

α+β )z
k + β

α+β and
p0,∞ = β

α+β . Substituting p0,∞ into (22) and let k2 = k1 = k,
by several simple manipulations, we get γ̄ = lim

k→∞
P{γk =

0} = 1
α+β (βψ1 + αψ2). Substituting the above equation for

p0,k into (22) yields ε1,k1 = δ+δ′zk1 and ε2,k1 = 1−δ−δ′zk1 ,

where δ′ =
(ψ2−ψ1)(p0,0− β

α+β )

σ2−σ1
. Similar to (24), we have

E[Xk] = E[(1− γk)AXk−1A
′] + E[γk]W +Q

= P{γ(1, k) = 0}AkX0A
′k + E[γk]W +Q

+
k−1∑
i=1

[
P{γ(k + 1− i, k) = 0}AiQA′i+

(P{γ(k + 1− i, k) = 0} − P{γ(k − i, k) = 0})AiWA′i]
=

(
ε1,1σ

k
1 + ε2,1σ

k
2

)
AkX0A

′k + (1− γ̄)W +Q

+
k−1∑
i=1

[(
ε1,k+1−iσ

i
1 + ε2,k+1−iσ

i
2

)
AiQA′i + (ε1,k+1−iσ

i
1

+ ε2,k+1−iσ
i
2 − ε1,k−iσ

i+1
1 − ε2,k−iσ

i+1
2 )AiWA′i] (28)

As k → ∞,
(
ε1,1σ

k
1 + ε2,1σ

k
2

)
AkX0A

′k converges to 0
since |σ1|ρ(A)2 ≤ σ2ρ(A)

2 < 1. Consider the following
series where S ∈ {Q,W}:

∑k−1
i=1 (ε1,k+1−iσ

i
1)A

iSA′i =

δ
∑k−1
i=0 σ

i
1A

iSA′i + δ′
∑k−1
i=0 z

k+1−iσi1A
iSA′i − (δ +

δ′zk+1)S. As k → ∞,
∑∞
i=0 σ

i
1A

iSA′i = HA(σ1, S) (see
Definition 1). By Lemma 5, limk→∞

∑k
i=0 z

k+1−iσi1A
iSA′i.

Thus, the above series converges to δ(HA(σ1, S) − S).

Similarly, the series
∑k
i=0

(
ε2,k+1−iσ

i
2

)
AiSA′i converges to

(1− δ)(HA(σ2, S)− S) as k tends to ∞. Then, after several
manipulations, (24) tends to E[X∞] = δHA(σ1, (1−σ1)W +
Q)+(1−δ)HA(σ2, (1−σ2)W +Q) as k → ∞. Taking traces
at both sides of the above equation and noticing the fact that
Tr(HA(q,W )) = Tr(W

∑∞
k=0 q

kA′kAk) = Tr(WGA(q)),
we can prove the second statement of this lemma.

(3) First, E[X∞] is monotonically increasing as ψ1 in-
creases, i.e., ∂

∂ψ1
E[X∞] ≥ 0. One can prove this by using the

second statement of Lemma 5 and the facts that ∂δ
∂ψ1

≤ 0,
∂σ1

∂ψ1
≥ 0 and ∂σ2

∂ψ1
≥ 0. Then, since ψ1 is monotonically

decreasing as pd increases, E[X∞] (and also Tr(E[X∞])) is
monotonically decreasing as pd increases.

Similar to (26), if C has full column rank,

Pk =(1− γk)APk−1A
′ + γkA(P

−1
k−1 + C ′R−1C)−1A′ +Q

≤(1− γk)APk−1A
′ + γkA(C

′R−1C)−1A′ +Q. (29)

Thus, Pk ≤ P̄k and E[Pk] ≤ E[P̄k]. The lower bound P k of
Pk can be proved similarly by noticing that Pk ≥ Q. Then,
Theorem 5 can be proved by applying Lemma 6.

F. Proof of Theorem 6

According to Remark 3, the case without CHANCE (where
packet losses obey i.i.d. distribution) is equivalent to the case
with CHANCE and pd = pf = 0. In this case, ψ†

1 = ψ†
2 =

σ†
2 = γ̄† = ℓ0, σ†

1 = ℓ0z, and δ† = 0. Thus, the bounds of
Tr(E[P∞]) as in (9) and (10) reduce to{

Tr(E[P †
∞]) = Tr(W (ℓ0)GA(ℓ0))

Tr(E[P̄ †
∞]) = Tr(W̄ (ℓ0)GA(ℓ0))

(30)

If σ2 < ℓ0, Tr(E[P∞]) = (1 − δ)Tr(W (σ2)GA(σ2)) +
δTr(W (σ1)GA(σ1)) ≤ Tr(W (σ2)GA(σ2)) < Tr(E[P †

∞]), by
Lemma 5. Similarly, Tr(E[P̄∞]) < Tr(W̄ (ℓ0)GA(ℓ0)). Then,
(11) can be proved based on (30) and (10).

G. Proof of Theorem 7

Lemma 7: With the channel sensing schedule Qm, the se-
quence {Xk|Xk = (1− γk)AXk−1A

′ +S, ∀k ≥ 0, X0 ∈ SQ}
is stable in mean sense iff. ρ (ΦΨ) ρ(A)2 < 1.

Proof: Define matrix Mk ∈ R2m×2m , where ∀i, j ∈ M,
[Mk]ij , P{sk = Bm(j), γ(1, k) = 0

∣∣s0 = Bm(i)}.
Following the very similar way as in (20), we can prove that
[Mk]ij =

∑2m

l=1[Mk−1]il[Φ]ljψj . Therefore, Mk =Mk−1ΦΨ.
Moreover, since M0 = I , Mk = (ΦΨ)

k. Similar to (21),
P{γ(k1, k2) = 0} = p′

k1−1(ΦΨ)k2+1−k1u holds true for all
k1 > 0 and k2 ≥ k1.

1) Sufficiency: According to Lemma 3, ∃ζ ′2 > 0 such that

P{γ(k1, k2) = 0} = Tr(up′
k1−1Mk2+1−k1)

≤
√
Tr(pk1−1u′up′

k1−1)
√
Tr(M ′

k2+1−k1Mk2+1−k1)

≤

√√√√2m(
2m∑
b=1

pb,k1−1)2
√
Tr(M ′

k2+1−k1Mk2+1−k1)

< 2
m
2 ζ ′2(k2 + 1− k1)

2mρ(ΦΨ)k2+1−k1
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where the first inequality is based on the Cauchy-Schwarz
inequality, while the last one is based on Lemma 3. Therefore,

Tr(E[Xk]) = P{γ(1, k) = 0}Tr(AkX0A
′k)

+
k−1∑
i=1

P{γ(k, k + 1− i) = 0}Tr(AiSA′i) + Tr(S)

< 2
m
2 ζ ′2k

2mρ (ΦΨ)
k
Tr(AkX0A

′k)

+ 2
m
2 ζ ′2

k−1∑
i=1

i2
m

ρ (ΦΨ)
i
Tr(AiSA′i) + Tr(S)

< 2
m
2 ζ ′2ζ2Tr(X0)k

2m+2nρ (ΦΨ)
k
ρ(A)2k

+ 2
m
2 ζ ′2ζ2Tr(S)

k−1∑
i=1

i2
m+2nρ (ΦΨ)

i
ρ(A)2i +Tr(S).

Similar to the proof of Lemma 4, a sufficient condition for
supk≥0 Tr(E[Xk]) <∞ is ρ (ΦΨ) ρ(A) < 1.

2) Necessity: Because αi + βi < 1, P{si,k+1 = 1} = (1−
βi)P{si,k = 1}+αiP{si,k = 0} = (1−αi−βi)P{si,k = 1}+
αi ≥ αi and also P{si,k+1 = 0} ≥ βi. Therefore, ∃pmin > 0
such that ∀k ≥ 1, pb,k ≥

∏m
i=1 min{αi, βi} = pmin. Then,

P{γ(k1, k2) = 0} ≥ pmin

B∑
b=1

B∑
l=1

[Mk2+1−k1 ]lb

≥pmin

√√√√ B∑
b=1

B∑
l=1

[Mk2+1−k1 ]
2
bl

= pmin

√
Tr

(
M ′
k2+1−k1Mk2+1−k1

)
≥ pminζ

′
1ρ (ΦΨ)

k2+1−k1 ,

where ζ ′1 > 0 and the last inequality is from Lemma 3. Then,
the necessity is obvious.

In view of the above lemma, Theorem 7 can be similarly
proved based on (25) and (26) which have been used to prove
Theorems 1 and 2.

H. Proof of Theorem 8

Lemma 8 ( [36]): For any two square matrices X,Y ∈
Rn×n, ρ(X) ≥ ρ(Y ) if for all possible i, j, [X]ij ≥ [Y ]ij ≥ 0;
ρ(X ⊗ Y ) = ρ(X)ρ(Y ).
∀b ∈ {1, . . . , 2m}, if bm = 1, from (14) we have

ψb = [pf,m + ℓ0(1− pf,m)]

m−1∏
j=1

P{oj,k = 1|sj,k = bj}

+

m−1∑
i=1

(i−1∏
j=1

P{oj,k = 1|sj,k = bj}
)
P{oi,k = 0|si,k = bi}ℓbii

≥
m−1∑
i=1

(i−1∏
j=1

P{oj,k = 1|sj,k = bj}
)
P{oi,k = 0|si,k = bi}ℓbii

+ ℓ0

m−1∏
j=1

P{oj,k = 1|sj,k = bj},

where the equality holds only when pf,m = 0. If bm = 0, in
a similar way, we have

ψb ≥
m−1∑
i=1

(i−1∏
j=1

P{oj,k = 1|sj,k = bj}
)
P{oi,k = 0|si,k = bi}ℓbii

+min{ℓ0, ℓm}
m−1∏
j=1

P{oj,k = 1|sj,k = bj},

and the equality holds only when pd,m = 0 if ℓ0 <
ℓm or pd,m = 1 if ℓ0 ≥ ℓm. Continuing applying this
method to {bm−1, . . . , b1}, we finally get that ψb ≥ ℓ0
if b = 2m and ψb ≥ ℓmin otherwise. Thus, ρ (ΦΨ) ≥
ρ (Φ Diag{0, . . . , 0, ℓ0}) = ℓ0

∏m
i=1(1 − βi), if ℓmin = 0.

In this case, the stability gain η ≤ 1√∏m
i=1(1−βi)

. Otherwise,

if ℓmin > 0, by Lemma 8, we have ρ(ΦΨ) ≥ ρ(ℓminΦ) =
ℓminρ(

⊗m
κ=1 Φκ) = ℓmin

∏m
κ=1 ρ(Φκ) = ℓmin. Thus, η ≤√

ℓ0
ℓmin

. In sum, (16) holds and thus the theorem is proved.

I. Proof of Theorem 9

Similar to the proof of Theorem 4, we have

P{Pk+1 > ϕI} = P{L(Pk) > ϕI, γk = 0}
+ P{R(Pk) > ϕI, γk = 1}

=
2m∑
b=1

{
P{L(Pk) > ϕI, sk−1 = Bm(b)}

2m∑
i=1

[M1]bi

+ P{R(Pk) > ϕI, sk−1 = Bm(b)}[
2m∑
i=1

([Φ]bi − [M1]bi)]
}

=
2m∑
b=1

{
P{L(Pk) > ϕI, sk−1 = Bm(b)}e′bΦΨu

+ P{R(Pk) > ϕI, sk−1 = Bm(b)}[
2m∑
i=1

[Φ]bi − e′bΦΨu]
}

=
2m∑
b=1

{
P{R(Pk) > ϕI, sk−1 = Bm(b)}

+ e′bΦΨu
[
P{L(Pk) > ϕI, sk−1 = Bm(b)}

− P{R(Pk) > ϕI, sk−1 = Bm(b)}
]}

≤P{R(Pk) > ϕI}+ ℓ̃∗
2m∑
b=1

[
P{L(Pk) > ϕI, sk−1 = Bm(b)}

− P{R(Pk) > ϕI, sk−1 = Bm(b)}
]

=ℓ̃∗P{L(Pk) > ϕI}+ (1− ℓ̃∗)P{R(Pk) > ϕI}
≤ℓ0P{L(Pk) > ϕI}+ (1− ℓ0)P{R(Pk) > ϕI},

where we have used the fact that
∑2m

i=1[Φ]bi = 1,∀b ∈
{1, . . . , 2m}. In the same way as in the proof of Theorem
4, the proof of the current theorem can be achieved.

J. Proof of Theorem 10

In the proof of Lemma 6, we show that ∀k ≥ 0, p0,k =
(p0,0 − β

α+β )z
k + β

α+β , which can be generalized to the
multi-licensed-channel case as P{si,k = s} = ξi,s + ξ̃i,sz

k
i ,

where s ∈ {0, 1}, ξi,s and ξ̃i,s are constants. Thus, ∀b ∈
{1, . . . , 2m}, pb,k = P{sk = Bm(b)} =

∏m
i=1(ξi,[Bm(b)]i +

ξ̃i,[Bm(b)]iz
k
i ) = wb + w̃b,kz

k, where wb ,
∏m
i=1 ξi,[Bm(b)]i ,
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z , max{z1, . . . , zm}. The expression of w̃b,k is compli-
cated but it is easy to see that, w̃b,k is above bounded by
some w̃b. Since z ∈ (0, 1), wb = limk→∞ pb,k. Thus, the
channel state vector can be rewritten as pk = υ + υ̃kz

k,
where υk = [w1, . . . , w2m ]′, υ̃k = [υ̃1,k, . . . , υ̃2m,k]

′. Let
υ̃ = [υ̃1, . . . , υ̃2m ]′. As shown in the proof of Lemma 7, the
consecutive packet loss probability is P{γ(k1, k2) = 0} =
p′
k1−1(ΦΨ)k2+1−k1u = (υ + υ̃k1−1z

k1−1)′(ΦΨ)k2+1−k1u.
Then, according to (28), the mean of the sequence {Xk|Xk =
(1− γk)AXk−1A

′ + γkW +Q,W ≥ 0, X0 ∈ SQ} becomes

E[Xk] = (υ + υ̃0)
′ (ΦΨ)

k
uAkX0A

′k

+
k−1∑
i=1

[
(υ + υ̃k+1−iz

k+1−i)′ (ΦΨ)
i
uAiQA′i

+ ((υ + υ̃k+1−iz
k+1−i)′

− (υ + υ̃k−iz
k−i)′ (ΦΨ)) (ΦΨ)

i
uAiWA′i]

+
(
1− (υ + υ̃k−1z

k−1)′ (ΦΨ)u
)
W +Q.

If ρ (ΦΨ) ρ(A)2 < 1, (ΦΨ)
k → 0. Since ΦΨ ≤ ρ (ΦΨ) I ,

(υ̃k+1−iz
k+1−i)′ (ΦΨ)

i
u ≤ υ̃′

k+1−iuz
k+1−iρ (ΦΨ)

i ≤
υ̃′uzk+1−iρ (ΦΨ)

i. With ρ (ΦΨ) < 1
ρ(A)2 , by Lemma

5, lim
k→∞

∑k−1
i=1 z

k+1−iρ (ΦΨ)
i
AiSA′i = 0. Hence

lim
k→∞

∑k−1
i=1 (υ̃k+1−iz

k+1−i)′ (ΦΨ)
i
uAiSA′i = 0, where S

can be either Q or W . Thus, E[Xk] converges to

E[X∞] =
∞∑
i=1

[
υ′ (ΦΨ)

i
uAiQA′i + (1− υ′ΦΨu)W +Q

+ υ′(I − ΦΨ) (ΦΨ)
i
uAiWA′i

]
=

∞∑
i=0

υ′ (ΦΨ)
i
uAi[Q+ (1− ϱ)W ]A′i.

Then, the lower and upper bounds as in (17) and (18) of the
current theorem are evident.

Though (18) can be used to compute the worst case perfor-
mance ratio in the way similar to Theorem 6, the computation
may be very complicated as the critical matrix can be nearly
in any form (may not be diagonalizable). Instead, we derive a
relaxed but much simpler bound for φ∞. Since υ′ (ΦΨ)

i
u ≤

υ′ρ(ΦΨ)iu = ρ(ΦΨ)i, E[X∞] ≤
∑∞
i=0 ρ(ΦΨ)iAi[Q +

(1 − ϱ)W ]A′i = HA (ρ (ΦΨ) , [Q+ (1− ϱ)W ]). Thus,
Tr(E[P̄∞]) ≤ Tr(W̄ (ϱ)GA(ρ(ΦΨ))). Together with (30), we
can prove (19).
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