
2856 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 8, AUGUST 2009

Dynamically Reconfigurable Architecture
Design for Ultrasonic Imaging

Erdal Oruklu, Senior Member, IEEE, and Jafar Saniie, Senior Member, IEEE

Abstract—Ultrasonic imaging algorithms, including detection
and compression, are computationally complex and difficult to
implement in hardware for real-time applications. In this paper,
we present an ultrasonic reconfigurable subband decomposition
processor (RSDP) that can employ wavelet filters for frequency
diverse signal processing. This architecture enables parallel im-
plementation of a lifting-based discrete wavelet transform. The
configurability of the architecture applies to the selection of
wavelet kernels and scales for subband decomposition, threshold-
ing operation for compression, and the postprocessing detection
algorithm. The underlying hardware design makes use of the fact
that both compression and detection applications share the same
algorithm fundamentals. A unified architecture has been designed
that implements signal decomposition and reconstruction with for-
ward and inverse discrete wavelet transforms. After the forward
transform step, a windowing operation is applied to discriminate
frequency bands for target detection. Using the same architecture,
a thresholding operation is applied to wavelet coefficients for
data compression. The flexibility and the modular design make
this reconfigurable architecture an effective and practical solu-
tion for real-time ultrasonic imaging applications. The resulting
architecture is adaptable, fast, and suitable for a system-on-a-chip
implementation that requires minimal logic resources.

Index Terms—Compression, detectors, field-programmable
gate array (FPGA), reconfigurable architectures, wavelet
transforms.

I. INTRODUCTION

U LTRASONIC target detection and classification in the
presence of high scattering noise (clutter) is a significant

and challenging problem. Another challenge for a real-time
ultrasonic imaging application is the large amount of data that
must be processed and compressed for image formation and/or
image transmission for remote analysis by experts through
wireless or wired communication channels or computer net-
works. In this paper, we present a reconfigurable architecture
for ultrasonic signal compression and target detection. This
design is based on the development of a run-time config-
urable architecture, which provides increased flexibility and
adaptability. In addition, this architecture manages the high
computational load of real-time applications while minimizing
area and power consumption. Target detection algorithms are

Manuscript received December 14, 2007; revised June 24, 2008. First pub-
lished May 19, 2009; current version published July 17, 2009. The Associate
Editor coordinating the review process for this paper was Dr. Cesare Alippi.

The authors are with the Department of Electrical and Computer Engi-
neering, Illinois Institute of Technology, Chicago, IL 60616 USA (e-mail:
erdal@ece.iit.edu; sansonic@ece.iit.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2009.2016370

based on the premise that clutter echoes exhibit randomness and
are more sensitive to frequency shifts than target echoes [1].
Therefore, frequency diverse signal decomposition methods
such as discrete wavelet transform (DWT) can be used for
differentiating the target information from the clutter echoes.
In an earlier work [2], a comparative study of DWT kernels
for target detection has been performed. The results indicate
a target-to-clutter ratio (TCR) enhancement of 6–13 dB when
the measured TCR is 0 dB or less. Wavelet filters can also be
beneficial to ultrasonic signal compression due to their energy
compaction properties. It has been shown [3], [4] that the DWT
can achieve with high fidelity signal compression ratios up to
90% when applied to ultrasonic broadband echoes.

For hardware realization of ultrasonic detection and com-
pression applications, we have designed a reconfigurable sub-
band decomposition processor (RSDP) that can implement
various wavelet kernels for subband decomposition of the ul-
trasonic data. An earlier version of the reconfigurable archi-
tecture was proposed in our earlier work [5]. In this paper, an
improved architecture is presented with a case study using a
field-programmable gate array (FPGA) implementation. Fur-
thermore, detailed discussions of the wavelet-based detection
algorithm and the RSDP hardware architecture are given. The
advantage of the RSDP architecture is the freedom to fine-tune
the target detection and compression algorithms for different
environments. The DWT component of this architecture is
based on the lifting scheme [6]. The lifting scheme requires two
to four times fewer arithmetic operations than the conventional
filter convolution architecture for the DWT [7].

Section II describes the algorithms that are used for a
frequency-diverse ultrasonic target detection, which involves
subband decomposition and frequency band selection for TCR
enhancement, as well as DWT-based compression methods. A
novel, reconfigurable, and pipelined architecture that is capa-
ble of implementing detection and compression is presented
in Section III. A case study is also given in Section III-E.
Section IV concludes this paper.

II. BACKGROUND

A. Subband Decomposition and Target Detection

In the ultrasonic imaging of materials, an effective method
of obtaining frequency diverse information is through split
spectrum processing (SSP) of the broadband echoes [1], [8].
SSP can be implemented via subband signal decomposition.
In Rayleigh scattering, where the signal wavelength is signif-
icantly larger than the microstructure of materials that consists
of randomly distributed reflectors and grains, the detected

0018-9456/$25.00 © 2009 IEEE

ORUKLU AND SANIIE: DYNAMICALLY RECONFIGURABLE ARCHITECTURE DESIGN FOR ULTRASONIC IMAGING 2857

Fig. 1. Ultrasonic target detection system using subband decomposition.

echoes exhibit randomness in amplitude and are sensitive to
shifts in the transmitted frequency. In contrast, targets are
often larger in size and less vulnerable to variation in the
transmitted frequency. In general, target echoes exhibit different
distributions as a function of frequency when compared with
microstructure scattering. Therefore, at any given time, the
outputs of bandpass filters can be represented as a random
feature vector that contains information that is related to target
and grain echoes.

The SSP procedure has several steps (see Fig. 1). The first
step is data acquisition. The experimental setup for data acquisi-
tion utilizes a pulse generator to produce the electrical impulses
to drive the ultrasonic transducer. The pulse receiver is used
to receive the backscattered ultrasonic echoes. The received
signal is then digitized and passed through several bandpass
filters using forward and inverse fast Fourier transforms (FFTs)
to split the spectrum into different subbands (i.e., observation
channels). The output signals from the subbands are then passed
into a postdetection processor for target detection [1], [8]. This
processor can employ different techniques such as signal av-
eraging, Bayesian classifiers, and order statistic filters, includ-
ing minimization. For the minimization algorithm, minimum
amplitudes of the observation channels are obtained for each
particular time, i.e.,

y(n) = min [|x1(n)| , |x2(n)| , . . . , |xm(n)|] (1)

where xi(n) is the observation channel output corresponding to
a certain frequency band.

In [2], the DWT has been shown to offer similar subband
decomposition performance with efficient hardware implemen-
tations and, therefore, is a viable alternative to the FFT in
detection algorithms.

B. DWT for SSP

Since the DWT does not have a prefixed kernel as in the
FFT, a wavelet kernel can be chosen based on the detection or
compression performance of the wavelet filters depending on
the ultrasonic application. In particular, the compactness prop-
erties of the DWT allow a region of interest to be determined

in a time–frequency representation, which is essential for target
detection [2]. TCR enhancement is governed by the degree of
the compactness of the target echo. The clear benefit of using
the DWT is the capability of fine-tuning the wavelet kernel
for compacting the target echo information while spreading the
clutter energy over a 2-D plane.

The DWT decomposes the digitized ultrasonic signal into
subbands and provides a time–frequency representation. The
task of the target detection algorithm is to select a number
of windows to discriminate the target echoes from the clutter
echoes. Here, a window represents a group of wavelet scales
that function as a bandpass filter similar to bandpass filtering in
SSP. Inverse DWT is applied to each window operation, and the
resulting time-domain signals are then fed into the postprocess-
ing block. The postprocessor in the final stage is a decision
block that reconstructs the time-domain signal from the incom-
ing channels according to order statistics rules. In the recon-
structed signal, the target echo is made more visible due to the
vulnerability of clutter echoes to the change in wavelet scales.

For ultrasonic experimental results, we have used 2048 data
points, which correspond to a maximum of 11 wavelet scales
in the wavelet transform domain. An important question is
determining the frequency bands (scales) to be used for post-
processing. Since the clutter echo spectrum is shifted toward
higher frequencies [8], the target echo is expected to be the
dominant information in lower frequencies. Wavelet domain
scales in Fig. 2 confirm that the lowest scales (high frequen-
cies) are mostly clutter information, whereas the higher scales
represent the low-pass approximation of the ultrasonic data.
Inspection of Fig. 2 also shows that the intermediate scales 3–6
contain dominating target information. Therefore, intermediate
scales are a desirable choice for postprocessing. Increasing the
number of scales to be used in the algorithm increases the
chance of integrating scales that do not carry target information
into the reconstruction step.

The following steps are critical for target detection applica-
tions that incorporate DWT decomposition.

1) Choose an appropriate wavelet kernel to maximize the
target echo compactness.

2858 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 8, AUGUST 2009

Fig. 2. Wavelet scales in (a) 3-D and (b) 2-D representation. (a) Time–
frequency representation of experimental ultrasonic data. (b) Wavelet scales
(d1–d11 are detail levels, where d1 represents the highest frequency band, and
a11 is the approximation level).

2) Identify the wavelet scales that carry target echo spectrum
information.

3) Determine how many windows are to be utilized for
signal reconstruction.

4) Find the number of scales that has to be integrated in each
window.

It is important to evaluate the performance of the wavelet
kernels for target detection since they differ in their compact-
ness properties. Here, compactness means that the signal can
be represented by fewer wavelet coefficients and scales. To
understand the compactness of the kernel, we examined the
similarity between the signal echo and the wavelet kernel. If
the wavelet kernel is similar to the ultrasonic target echo, then
the target echo becomes dominant in a particular scale. A

TABLE I
DWT WAVELET KERNEL PERFORMANCE EVALUATION

desirable property of wavelet kernels is retaining target echo
information in as many frequency scales (subbands) as possible.
This is an important property for the minimization detection
algorithm.

C. Performance Results

For performance analysis and testing, the experimental
A-Scan data from a steel block (type 1018, a grain size of
50 μm) are acquired and analyzed. A Panametric (type 5052)
pulser/receiver is used to drive the ultrasonic transducers, and
it is used to receive the ultrasonic echoes. The received echo
signals are then converted to digital data for SSP. The A-scan
measurements were conducted using a broadband unfocused
ultrasonic transducer of 0.5-in diameter with a 5-MHz center
frequency. Data were acquired with a 100-MHz sampling rate,
and each sample is 8 bits. The steel block has several holes
(1.5 mm in diameter) at known separate locations. All the
A-scan measurements probe the hole positions within the steel
block. For performance analysis, the TCR is calculated by
finding the maximum target echo (reflection from hole location)
amplitude in the reconstructed signal, i.e.,

TCR = 20 ∗ log10(T/C) (2)

where T is the maximum target echo amplitude, and C is the
maximum clutter echo amplitude. This value is compared with
the largest amplitude of clutter echoes.

Table I and Fig. 3 show the performance of Daubechies
(D4, D10), Symmlet (8,10), Coiflet (1,5), Battle-Lemarie (1,5),
and Vaidyanathan wavelets and the FFT on different sets of
experimental ultrasonic data consisting of a target echo that is
highly masked by a clutter (i.e., microstructure scattering) for
detection analysis. The number of filters in the filter bank for
the FFT is eight. For the DWT, three windows are used for sig-
nal reconstruction. For postprocessing, absolute minimization
is applied to the filter-bank outputs. It can be seen that the de-
tection performance of wavelet transforms closely matches that
of the FFT-based SSP method, and, for any given experimental
data, up to 13-dB TCR enhancement is possible using wavelet
decomposition.

In general, the algorithm performs well for multiple targets
as long as the target echoes are not within each other’s prox-
imity. If multiple target echoes are close enough to interfere

ORUKLU AND SANIIE: DYNAMICALLY RECONFIGURABLE ARCHITECTURE DESIGN FOR ULTRASONIC IMAGING 2859

Fig. 3. TCR improvement result using the Coiflet wavelet. (a) Experimental data. (b) After SSP operation.

Fig. 4. Thresholding operation for ultrasonic data compression.

with each other, then the performance of the algorithm may
deteriorate. The minimization postprocessing algorithm detects
the presence of the targets but may not differentiate individual
targets. Nevertheless, other postprocessing techniques such as
neural networks can be employed to resolve the existence of
multiple targets [9].

D. Ultrasonic Signal Compression

In ultrasonic imaging applications, it is desirable to use
data compression techniques to reduce the data size while
maintaining the signal integrity. Fig. 4 shows the ultrasonic data
compression algorithm. The data compression of a given signal
x(n) is successful when the redundant and noise components
of x(n) are reduced or removed. The signal x̂(n) is the com-
pressed representation of x(n).

Thresholding can be applied to transform the coefficients of
the original ultrasonic signal for data compression. In the hard
thresholding method, all coefficients that are smaller than τ are
set to zero, and all coefficients that are greater than τ are kept
the same, i.e.,

X̂(k) =
{

0, X(k) < τ
X(k), X(k) ≥ τ

. (3)

For a signal that is corrupted by white Gaussian noise with
variance σ2, it has been shown [10] that the optimal threshold
for N number of sample points is given by τ , i.e.,

τ =
σ√
N

√
2 ln(N − 1). (4)

This threshold value can be used as the initial threshold
value. Based on the compression ratios achieved, this value
can dynamically be adjusted. Data compression performance
of the DWT depends on the wavelet kernel and its compactness
properties. The data compression performance of six different
wavelet kernels [3] is shown in Fig. 5.

This figure shows how much energy is concentrated in the
five most dominant coefficients of the DWT as a function of
the bandwidth of the ultrasonic signal. These results indicate
that the Daubechies (Daub20) wavelet kernel has the best data
compression performance, whereas the Haar wavelet kernel has
the worst data compression performance. Furthermore, a robust
compression architecture must be reconfigurable and must sup-

Fig. 5. Energy accumulated among the five most dominant coefficients of
the DWT using the following kernels: (a) Haar, (b) Daubechies (Daub20),
(c) Beylkin, (d) Coiflet, (e) Symmlet, and (f) Vaidyanathan. Energy given
as a function of ultrasonic echo bandwidth (NBW: normalized bandwidth)
[3], [4].

port multiple wavelet kernels to achieve optimal performance
for different ultrasonic testing environments.

III. RSDP ARCHITECTURE

Multipurpose design of the ultrasonic processor demands
a reconfigurable architecture that is capable of realizing both
target detection and data compression algorithms. In addition,
this architecture requires adaptable wavelet-based subband de-
composition for optimal performance. Therefore, the RSDP ar-
chitecture has been designed to accommodate these objectives.

The RSDP design is based on the development of a dy-
namically configurable architecture, which provides increased
flexibility and adaptability to ultrasonic imaging applications.
The configurability of the architecture applies to the application
type (i.e., compression or detection), selection of the subband
transform method, algorithm parameters, thresholding opera-
tions, and the postprocessing algorithm.

Fig. 6 shows the system components of the ultrasonic proces-
sor architecture. The input memory holds the ultrasonic data.
The ultrasonic data are fed into the forward DWT block using
processing elements (PEs). The intermediate results are stored

2860 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 8, AUGUST 2009

Fig. 6. RSDP architecture.

in a buffer. If the selected operation mode is data compression,
then a hard threshold is applied to the amplitudes of the
coefficients by a sequencer block. Since a major portion of the
transform coefficients are below the threshold value, this results
in a significant reduction of the data size. If the operation mode
is target detection, the intermediate results are processed by the
sequencer, which selects certain wavelet scales based on the
windowing method. This windowing operation discriminates
those subbands where target information is dominant, and they
are selected for signal reconstruction (up to three windows for
the DWT). Therefore, the same sequencer block is utilized for
both compression and detection. The inverse transform block
uses the same hardware resources as the forward transform
block, and they can be reconfigured for multiple inverse DWT
operations. The postprocessing block applies order statistics
methods such as minimization. The outcome is stored in the
output memory to be transmitted or displayed.

The embedded processor core in Fig. 6 acts as a control logic
unit and is designed to perform the following tasks:

1) determine the type of the operation that can either be data
compression or target detection;

2) select the filter coefficients (i.e., the wavelet kernel) for
the DWT;

3) apply amplitude thresholding and wavelet scale selection
parameters;

4) reallocate hardware resources for inverse transform chan-
nels for target detection.

The framework of the wavelet kernel implementation in the
RSDP is based on the lifting scheme [11], [12]. The lifting
scheme offers several advantages compared with conventional
filter convolution architectures. It requires fewer arithmetic op-
erations, and in-place calculation and integer-based operations
are possible [7], [12].

A. Lifting Scheme Implementation of the DWT

The lifting scheme is computationally less complex, and
any wavelet filter can be decomposed into a finite sequence
of simple filtering steps, which are called lifting steps [13].

This decomposition is a factorization of the polyphase matrix
of the wavelet filter into prediction and update steps, which are
implemented as alternating upper and lower triangular matrices
and a constant diagonal matrix, i.e.,

P (z) =
m∏

i=1

[
1 si(z)
0 1

] [
1 0

ti(z) 1

] [
K 0
0 1/K

]
(5)

where si(z) and ti(z) are the Laurent polynomials, K is the
scaling factor, and m is determined by the wavelet kernel
factorization. For example, the Cohen–Daubechies–Feauveau
9/7 tap wavelet filter (CDF 9/7) can be factored into lifting
steps as

P (z) =
[

1 α(1 + z−1)
0 1

] [
1 0

β(1 + z) 1

]

×
[

1 γ(1 + z−1)
0 1

] [
1 0

δ(1 + z) 1

] [
ζ 0
0 1/ζ

]
(6)

where α = −1.58613, β = −0.05268, γ = 0.88291, δ =
0.44351, and ζ = 1.14960.

B. PE Design for the Lifting Scheme

The RSDP architecture consists of PE arrays that operate as
multifunction data-path elements. Each PE is designed to be ca-
pable of realizing a single lifting step computation. Therefore,
in theory, even a single PE is sufficient to complete a single
wavelet decomposition level by sequential operations. How-
ever, the throughput can effectively be increased by introducing
arrays of PEs into the system, where arrays simultaneously
execute multiple decomposition levels.

For a universal PE design, it is important to analyze different
types of update and predict filters si(z) and ti(z), respectively,
in the lifting factorization. These filters may have different
implementations and data-path requirements depending on the
wavelet kernel [14]–[16], as shown in Fig. 7. To realize the
circuits in Fig. 7, the PE architecture is designed to include two
adder units, two registers, four multiplexers, and a multiplier
unit as a single data-path element (see Fig. 8). Control signals
for multiplexers enable the desired type of lifting circuits. The

ORUKLU AND SANIIE: DYNAMICALLY RECONFIGURABLE ARCHITECTURE DESIGN FOR ULTRASONIC IMAGING 2861

Fig. 7. DWT lifting step circuits.

Fig. 8. PE architecture for the RSDP.

registers are used to provide the filter taps. If there are more
than two taps in either si(z) or ti(z), these filters require a
combination of more than one PE for a single lifting step.

C. System Data-Path Design

The RSDP architecture supports lifting factorizations with
a variable number of lifting steps through the dynamic re-
configuration of the PE interconnection network. Although a
crossbar network, the Clos network, or tree structures [17] can
be implemented for PE interconnection, these network types
are costly in terms of bus size and logical units. Consequently,
a simpler network communication is designed for the RSDP
architecture. In this network, arrays of PEs are formed by
feeding the output result either to the next neighboring PE or
to an output buffer memory. Each PE generates two outputs—s
(approximation or a low-pass result) and d (detail or a high-pass
result). For the last PE in an array, the d output is stored in the
wavelet coefficient memory, and the s output is forwarded to
the beginning of the next PE array (see Fig. 9). To achieve this
I/O operation, multiplexers are used for controlling the input
and output destinations.

In summary, subband decomposition using the RSDP has the
following steps.

1) The wavelet filter is decomposed into lifting steps, and
lifting factorization is obtained.

2) PEs can be configured for any wavelet filter implemen-
tation. A context memory holds the required configura-
tion states and coefficient values. A finite-state machine
(FSM) in the control block routes the desired signals to
the PEs during the initialization phase.

3) PEs are cascaded to build the lifting architecture. Regis-
ters (D-blocks in Fig. 9) are used for pipelining the lifting
steps. The number of lifting steps from the factorization
in step 1 determines the number of PEs that is required in
one array. For example, CDF 9/7 or Daubechies-4 (D4)
can be implemented in four lifting steps, whereas CDF
5/3 and CDF 2/6 require two lifting steps [18]–[20].

4) For a faster implementation, more PE arrays can be
constructed, which can execute different wavelet decom-
position stages in parallel. The low-pass output signal
from each array is fed into the next array input. Each
array expects two samples from the previous array, and
the sampling rate is half of the previous stage. Therefore,
execution at each stage can simultaneously be finished
with a minimum amount of latency.

5) A splitter block at the beginning of each PE array (see
Fig. 9) is required to split the input signal into even and
odd samples. For an inverse DWT, a merger block is used
to combine the coefficients from the wavelet memory and
the output of the previous stage.

6) For each PE array, a buffer memory is used to store the
high-pass signal outputs of each stage (see Fig. 9).

7) Windowing operation for detection is accomplished by
zero-padding the coefficients outside the window using
the sequencer block in Fig. 10. The width and the location
of windows are also configurable based on the processing
profiles that are stored in the memory.

8) For compression applications, the sequencer can be uti-
lized to perform thresholding on the amplitudes, as shown
in Fig. 10. By retaining only the coefficients above the
threshold and adjusting this threshold value, desired com-
pression ratios can be achieved.

9) For an inverse transform, the ultrasonic target detection
algorithm requires up to three inverse DWT channels.
Therefore, the available PE resources should be parti-
tioned for each channel for concurrent operation. In the
parallel-mode operation, the output of each channel can
immediately be fetched to the postprocessing block, and
the decision results can be obtained without waiting for
all subsequent inverse transform channels to finish.

D. Control Logic

Each PE unit includes FSM logic for dynamic reconfigu-
ration by an external control unit or a CPU. FSM logic is
responsible for loading the constant lifting coefficient from the
coefficient memory, selecting the correct lifting circuit type,
and choosing the source input and the destination output for
the desired PE array size. The FSM machine is connected to
the embedded processor unit through a control bus, and the
instructions that are issued by the processor are received by all
PE elements via a shared bus. Fig. 11 shows the state diagram
for the PE FSM logic. In the idle state, the PE waits for the
assertion of either an execute signal for starting the execu-
tion or a configure signal for reconfiguring the PE execution
parameters.

In the idle state, output latches are disabled, and dynamic
power consumption is minimum in the data-path elements. If
the execute signal is asserted, the PE changes its state to execute
and starts processing the data. If the configure signal is asserted,
the PE is now in the reconfigure mode. Initially, the PE checks
the control bus and reads the control instruction word. The
format of this instruction is shown in Fig. 12. The most sig-
nificant m bits are used to address PEs (2m PEs are supported).
If this address does not match the PE’s inherent address, the PE

2862 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 8, AUGUST 2009

Fig. 9. Implementations of concurrent wavelet decompositions using PE arrays.

Fig. 10. Sequencer-thresholding and windowing operations for compression and detection applications.

ORUKLU AND SANIIE: DYNAMICALLY RECONFIGURABLE ARCHITECTURE DESIGN FOR ULTRASONIC IMAGING 2863

Fig. 11. State machine for the PE control.

Fig. 12. Instruction word format for PE configuration.

returns to the idle state. If the address is correct, the PE latches
the configuration data. The next control bits IN and OUT are
input and output selection bits for the multiplexers: IN = 0
selects the previous PE as the input source. IN = 1 selects the
memory buffer as the input source. OUT = 0 selects the next
PE for output destination. OUT = 1 selects the memory buffer.
The next bits are arithmetic-logic unit configuration bits, which
control the multiplexers in Fig. 12 for selecting the lifting step
circuits. The least significant n bits contain the fixed lifting
coefficient. After this coefficient is stored to a register, the
PE sends an acknowledgement signal to the control unit and
returns to the idle state. The control unit sends configuration
instructions to all the required PEs and updates the resource
table of PEs with the incoming acknowledgement signals. After
all the PEs are configured, it issues the execute signal. In this
setup, the reconfiguration overhead is directly proportional to
the number of PEs that is required by the algorithm. If the con-
figuration instructions are stored in a context memory, fetching
and issuing instructions can be done very quickly. Therefore,
run-time reconfiguration of PEs is feasible and efficient in the
RSDP architecture.

Fig. 13. Typical timing requirements.

Fig. 14. System architecture.

E. Case Study

The repetition rate in ultrasonic imaging systems dictates the
processing time for real-time target detection or compression.
For real-time systems, a typical value for a repetition rate is
1000 Hz, resulting in 1-ms time intervals for processing the
acquired data. Fig. 13 shows the timing requirements for a typ-
ical application. Data acquisition takes 10 μs (considering 1-K
samples acquired at a 100-MHz sampling rate). Consequently,
the RSDP architecture has to process the data and store or
transmit the results in 990 μs.

A hardware/software codesign scheme is utilized to obtain
the proposed adaptable ultrasonic imaging architecture. The
target platform is an FPGA chip with an embedded PowerPC
CPU core. Fig. 14 shows the Xilinx Virtex-II Pro FPGA [21]
device that is configured for RSDP operation. In this system,
the embedded core processor is for preprocessing and synchro-
nizing the streaming input data that are acquired through an
ultrasonic sensor and an A/D block. The on-chip peripheral bus
[22] allows communication between the processor, the on-chip
memory, and the accelerator block. The accelerator block im-
plements the required DWT data-path functions and the thresh-
olding operations for compression via PEs. PEs are configured
to establish systolic arrays for the desired DWT lifting scheme.

For this case study, the accelerator block incorporates 24 PEs
to implement the ultrasonic imaging system (see Fig. 9). The

2864 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 8, AUGUST 2009

TABLE II
FPGA SYNTHESIS RESULTS

CDF 9/7 biorthogonal wavelet filter [23] is used for subband
decomposition. This filter is known to work best with compres-
sion applications (i.e., JPEG2000 [24], [25]), and many efficient
hardware realizations of the 2-D CDF 9/7 transform have been
proposed particularly for image compression algorithms [26].
Ultrasonic data (1024 points) that are sampled at 100 MHz
are processed by an array of PEs, which carry out the data-
path computations that are required for each lifting step. Each
PE has two 16-bit adder units and a 16-bit multiplier. PEs
are pipelined to achieve higher throughput. These elements are
configured during run-time initialization for different wavelet
kernels. Depending on the wavelet kernel and the corresponding
lifting factorization, a number of PEs are cascaded to form
an array of PEs. For example, 9/7 filter factorization requires
four lifting steps [13], which are implemented by four PEs. For
1024 points, up to ten wavelet decomposition stages have to be
completed for all the wavelet coefficients. If more than one PE
array is available, the throughput can significantly be increased
by concurrent operations. The lifting algorithm is sequential in
nature: Second-stage calculations can immediately start after
two low-pass results are generated from the first stage.

Once the pipeline is full, all the PE arrays start concurrent
execution, and multiple wavelet decomposition levels are si-
multaneously computed. Since 24 PEs are available, six PE
arrays can be used for 100% PE utilization (see Fig. 9). If the
number of lifting steps is not equal to four, it is still possible to
use more than one PE array by readjusting the size of the PE
arrays. The number of inverse transforms that is required for
signal reconstruction determines the number of windows that
are used in the 2-D windowing stage. This number also dictates
the throughput of the RSDP. In this case study, three windows
are used; therefore, three inverse transforms are required. The
same 24 PEs that are used in the forward DWT are reconfigured
for inverse transform operations. In this case, two PE arrays
are allocated for each inverse transform block. They operate in
parallel, and all channel outputs are passed into a minimization
postprocessing block.

F. Implementation Results

The PE accelerator block for the RSDP case study has been
synthesized with Xilinx Virtex-II Pro (XC2VP30-7) FPGA
using the Xilinx ISE 8.2 software. Table II shows the implemen-
tation results. The logic required for the PE fabric consumes
up to 40% of the available FPGA resources. This indicates
that more complex postprocessing methods, such as neural
networks, can also be realized within the RSDP FPGA archi-
tecture [9]. Furthermore, the RSDP data-path design achieves

a clock rate of 141 MHz, which meets the real-time operation
requirements of ultrasonic imaging, including data acquisition,
data processing, and data storage. The proposed architecture
can execute the SSP algorithm (one forward DWT, three inverse
DWTs, thresholding, and postprocessing) in less than 100 μs.
As a comparison, a software-based implementation of the SSP
algorithm is implemented (using FFTs for frequency decompo-
sition) on an embedded Microblaze microprocessor running at
100 MHz in a Virtex-II Pro FPGA. This software implementa-
tion requires 37.72 ms to execute the SSP algorithm, which is
clearly not sufficient for a repetition rate of 1 ms (see Fig. 13).

G. Throughput Analysis of RSDP Wavelet Implementation

For forward DWT implementation, the required clock cycles
are computed according to the following equations for direct or
parallel implementation using the RSDP (see Fig. 9). This relies
on the assumption that each PE operation can be executed in a
single clock cycle. The computational parameters are:

• number of data points N ;
• number of wavelet decomposition stages = NS

(maximum number of stages = log2 N);
• number of PEs = NPE;
• number of lifting steps for a single wavelet decomposition

level = NLS;
• number of PE arrays = NA = �NPE/NLS�;
• latency for single-level DWT decomposition=Td =NLS;
• number of passes = NPass = �NS/NA�.
Direct implementation without any parallelism (i.e., one

array of four PEs) results in the following equation:

Total_ClockCycles

=
NS−1∑
i=0

2NS−1−i + Total_Latency

= 2NS−1 + 2NS−2 + 2NS−3 + · · · + 1 + Td ∗ NS. (7)

Hence, for 1024-point and 10-level wavelet decomposition in
the case study, 1064 cycles are needed, i.e.,

Total_ClockCycles = 29 + 28 + 27 + · · · + 2 + 1 + 4 ∗ 10
= 1023 + 40 = 1063. (8)

Parallel reconfigurable implementation (i.e., NA concurrent
decomposition levels) results in the following equation:

Total_ClockCycles

=
NPass∑

i=1

2NS−1−(i−1)∗NA + Total_Latency

= 2(NS−1) + 2(NS−1)−NA + 2(NS−1)−2∗NA + · · ·
+ 2(NS−1)−(NPass−1)∗NA + (NA ∗ Td) ∗ Npass. (9)

Using six arrays of four PEs, 568 clock cycles are re-
quired for 1024-point and 10-level wavelet decomposition
(see Fig. 9), i.e.,

NPass =
⌈

10
6

⌉
= 2 (10)

Total_ClockCycles = 29 + 23 + (6 ∗ 4 ∗ 2) = 568. (11)

ORUKLU AND SANIIE: DYNAMICALLY RECONFIGURABLE ARCHITECTURE DESIGN FOR ULTRASONIC IMAGING 2865

Further improvement can be obtained by increasing the PE
arrays; however, the throughput gain will be less significant.
The throughput of the forward DWT could be the basis for
evaluating the total performance for the RSDP architecture for
a complex system.

IV. CONCLUSION

In summary, the RSDP realization offers several benefits to
ultrasonic imaging applications. The detection or compression
algorithms can be time-multiplexed to perform forward
transform, bandpass filtering, thresholding, inverse transform,
and postprocessing. Data-path elements have dynamically been
reallocated and reconfigured for each task. The type of the
DWT kernel is an important factor that affects the performance
of both ultrasonic data detection and compression algorithms.
With the reconfigurable data-path logic, several wavelet kernels
can be supported and implemented during the algorithm run
time. The window size and scale selections can adaptively
be adjusted for better target detection performance. These
concepts are crucial for a high-performance and adaptable ul-
trasonic imaging system. Therefore, the RSDP FPGA prototype
that has been presented in this paper offers significant adaptabil-
ity and area improvements compared with conventional logic
implementations, and it is feasible to use it in portable ultra-
sonic devices for real-time applications. An application-specific
integrated circuit implementation with integration of ultrasonic
sensors can result in a very compact system-in-package
solution for industrial and medical ultrasonic applications.

ACKNOWLEDGMENT

The authors would like to thank Dr. G. Cardoso for his
assistance and feedback for ultrasonic data compression.

REFERENCES

[1] J. Saniie, D. T. Nagle, and K. D. Donohue, “Analysis of order statistic
filters applied to ultrasonic target detection using split spectrum process-
ing,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 38, no. 2,
pp. 133–140, Mar. 1991.

[2] E. Oruklu and J. Saniie, “Ultrasonic target detection using discrete
wavelet transform for NDE applications,” in Proc. IEEE Symp. Ultrason.,
Aug. 2004, vol. 2, pp. 1054–1057.

[3] G. Cardoso and J. Saniie, “Performance evaluation of DWT, DCT and
WHT for compression of ultrasonic signals,” in Proc. IEEE Ultrason.,
Ferroelectr., Freq. Control Symp., Aug. 2004, vol. 3, pp. 2314–2317.

[4] G. Cardoso, “Compression, estimation, and analysis of ultrasonic sig-
nals,” Ph.D. dissertation, Illinois Inst. Technol., Chicago, IL, 2005.

[5] E. Oruklu, G. Cardoso, and J. Saniie, “Reconfigurable architecture for
ultrasonic signal compression and target detection,” in Proc. IEEE
ICASSP, Mar. 2005, vol. 5, pp. 129–132.

[6] W. Sweldens, “The lifting scheme: A custom-design construction of
biorthogonal wavelets,” Appl. Comput. Harmon. Anal., vol. 3, no. 2,
pp. 186–200, Apr. 1996.

[7] J. Reichel, “On the arithmetic and bandwidth complexity of the
lifting scheme,” in Proc. Int. Conf. Image Process., Oct. 2001, vol. 3,
pp. 198–201.

[8] J. Saniie and D. T. Nagle, “Analysis of order statistic CFAR thresh-
old estimators for improved ultrasonic target detection,” IEEE Trans.
Ultrason., Ferroelectr., Freq. Control, vol. 39, no. 5, pp. 618–630,
Sep. 1992.

[9] S. Yoon, E. Oruklu, and J. Saniie, “Dynamically reconfigurable neural net-
work architectures for ultrasonic flaw detection,” in Proc. IEEE Ultrason.
Symp., Oct. 2006, pp. 1377–1380.

[10] D. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard,
“Density estimation by wavelet thresholding,” Dept. Statist., Stanford
Univ., Stanford, CA, 1992. Tech. rep.

[11] W. Sweldens, “The lifting scheme: A construction of second generation
wavelets,” SIAM J. Math. Anal., vol. 29, no. 2, pp. 511–546, 1997.

[12] W. Sweldens, “The lifting scheme: A new philosophy in biorthogo-
nal wavelet constructions,” in Proc. SPIE, Wavelet Appl. Signal Image
Process. III, 1995, vol. 2569, pp. 68–79.

[13] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting
steps,” Bell Laboratories, Murray Hill, NJ, 1996. Tech. rep.

[14] C. Huang, P. Tseng, and L. Chen, “Efficient VLSI architectures of lifting
based discrete wavelet transform by systematic design method,” in Proc.
IEEE Int. Symp. Circuits Syst., May 2002, vol. 5, pp. 565–569.

[15] P. Tseng, C. Huang, and L. Chen, “Reconfigurable discrete wavelet
transform architecture for advanced multimedia systems,” in Proc. IEEE
Workshop Signal Process. Syst., Aug. 2003, pp. 137–141.

[16] H. Liao, M. K. Mandal, and B. F. Cockburn, “Efficient architectures for
1-D and 2-D lifting based wavelet transforms,” IEEE Trans. Signal
Process., vol. 52, no. 5, pp. 1315–1326, May 2004.

[17] W. Wolf, FPGA Based System Design, ser. Prentice Hall Modern Semi-
conductor Design Series. Upper Saddle River, NJ: Prentice-Hall, 2004.

[18] K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI architecture for
lifting-based forward and inverse wavelet transform,” IEEE Trans. Signal
Process., vol. 50, no. 4, pp. 966–977, Apr. 2002.

[19] T. Acharya and C. Chakrabarti, “A survey of lifting-based discrete
wavelet transform architectures,” J. VLSI Signal Process., vol. 42, no. 3,
pp. 321–339, Mar. 2006.

[20] W. Jiang and A. Ortega, “A lifting factorization-based discrete wavelet
transform architecture design,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 11, no. 5, pp. 651–657, May 2000.

[21] Xilinx, Inc., Virtex-II Pro and Virtex-II Pro X FPGA User Guide,
UG012(v4.1), Mar. 2007. [Online]. Available: http://direct.xilinx.com/
bvdocs/userguides/ug012.pdf

[22] Xilinx, Inc., OPB IPIF Product Specification DS414, Dec. 2005.
[Online]. Available: http://www.xilinx.com/bvdocs/ipcenter/data_sheet/
opb_ipif.pdf

[23] A. Cohen, I. Daubechies, and J. C. Feauveau, “Biorthogonal bases of
compactly supported wavelets,” Commun. Pure Appl. Math., vol. 45,
no. 5, pp. 485–560, Jun. 1992.

[24] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 still
image coding system: An overview,” IEEE Trans. Consum. Electron.,
vol. 46, no. 4, pp. 1103–1127, Nov. 2000.

[25] K. Andra, C. Chakrabarti, and T. Acharya, “A high-performance
JPEG2000 architecture,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 13, no. 3, pp. 209–218, Mar. 2003.

[26] S. L. Bishop, S. Rai, B. Gunturk, J. L. Trahan, and R. Vaidyanathan,
“Reconfigurable implementation of wavelet integer lifting transforms for
image compression,” in Proc. IEEE Int. Conf. Reconfigurable Comput.
FPGA’s, Sep. 2006, pp. 1–9.

Erdal Oruklu (S’01–M’05–SM’09) was born in
Istanbul, Turkey, in 1973. He received the B.S. de-
gree in electronics and communication engineering
from the Technical University of Istanbul, Istanbul,
in 1995, the M.S. degree in electrical engineering
from Bogazici University, Istanbul, in 1999, and the
Ph.D. degree in computer engineering from Illinois
Institute of Technology, Chicago, in 2005.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,
Illinois Institute of Technology, where he is also the

Director of the very large scale integration (VLSI) and system-on-a-chip (SoC)
research laboratory. His research interests include reconfigurable computing,
advanced computer architectures, hardware/software codesign, and embedded
systems. The main focus of his studies is the research and development of SoC
frameworks for FPGA and VLSI implementations of real-time signal process-
ing applications, including ultrasonic target detection, data compression, and
time–frequency transforms.

Dr. Oruklu is a member of Eta Kappa Nu.

2866 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 8, AUGUST 2009

Jafar Saniie (S’80–M’81–SM’91) was born in Iran
on March 21, 1952. He received the B.S. degree
in electrical engineering from the University of
Maryland, College Park, in 1974, the M.S. degree in
biomedical engineering from Case Western Reserve
University, Cleveland, OH, in 1977, and the Ph.D.
degree in electrical engineering from Purdue Univer-
sity, West Lafayette, IN, in 1981.

In 1981, he was with the Department of Applied
Physics, University of Helsinki, Helsinki, Finland,
where he conducted research in photothermal and

photoacoustic imaging. Since 1983, he has been with the Department of Electri-
cal and Computer Engineering, Illinois Institute of Technology, Chicago, where
he is a Filmer Professor, the Associate Chair, and the Director of the Embedded
Computing and Signal Processing Research Laboratory. His research interests
and activities include ultrasonic signal and image processing, statistical pattern
recognition, estimation and detection, embedded digital systems, digital signal
processing with FPGAs, and ultrasonic nondestructive testing and imaging.
In particular, he has performed extensive work in the areas of frequency
diverse ultrasonic flaw enhancement techniques, embedded signal processing
architectures for ultrasonic imaging, ultrasonic data compression, nonlinear
signal processing in target detection, ultrasonic imaging of reverberant multi-
layer structures, morphological processing and pattern recognition in ultrasonic
imaging, time–frequency analysis of ultrasonic signals, and applications of
neural networks for detecting flaw echoes and classifying microstructural
scattering.

Dr. Saniie is a member of Sigma Xi, Tau Beta Pi, and Eta Kappa Nu and
had been the IEEE Branch Counselor (1983–1990). He has been a Technical
Committee Member of the IEEE Ultrasonics Symposium since 1987 (cur-
rently, he is the Chair of Sensors, NDE, and Industrial Applications), was the
Program Coordinator and the Local Chair of the Conference on Properties
and Applications of Magnetic Materials from 1985 to 2006, was an Editorial
Advisory Member of the Nondestructive Testing and Evaluation Journal from
1986 to 1996, and was the Associate Editor of the IEEE TRANSACTIONS ON

ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL since 1994.
He was a recipient of the 1986 Outstanding IEEE Student Counselor Award and
of the 2005 and 2006 University Outstanding Faculty Awards in recognition of
his excellence in teaching.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

